Primera Autoevaluación

Técnicas Digitales II – Curso 4R2

Completar los espacios en blancos.	
1. Un sistema digital es un sistema de	construido con flip-flops y

	compuertas.
2.	Para superar la dificultad de especificar un sistema digital grande con tablas de verdad, estos
	se diseñan utilizando
3.	El desplazamiento, el conteo, la puesta a cero y la carga son ejemplos de
4.	Un contador se considera como que efectúa la operación de incremento
	en uno.
5.	El conjunto de registros y la ALU donde se conectan se le conoce como
6.	La instrucción denota una transferencia del contenido del registro R1 al
	registro R2.
7.	Los corchetes en $R3 \leftarrow M[R5]$ especifican una
8.	En una instrucción condicionada $T1:R1 \leftarrow R2$, $T1$ es y el
	no es representado.
9.	Un ejemplo de una microoperación de resta utilizando el complemento a 2 y suma es:
10.	$R2 \leftarrow \overline{R2}$ especifica una microoperación de

Indique verdadero o falso, en caso de falso corregir la oración.

- 1. Un corrimiento aritmético a la izquierda divide un número binario con signo por 2.
- 2. El último bit a la izquierda en un registro contiene el bit de signo y los bits restantes alojan el número.
- 3. El corrimiento aritmético a la derecha deja intacto el bit de signo y desplaza el número a la derecha.
- 4. Luego de una operación aritmética, podemos detectar desborde utilizando los dos últimos acarreos, si estos son iguales tenemos una condición de desborde.
- Una estructura de bus consta de un conjunto de líneas comunes, una para cada bit de los registros, a través de las cuales se transfiere información binaria a todos los registros simultáneamente.
- 6. El tercer estado es un estado de alta impedancia, el cual se comporta como un circuito. abierto, lo que significa que la salida se desconecta y no tiene significado lógico.
- 7. El bit de estado cero Z se inicia a 0 si la salida de la ALU contiene solo ceros y se pone en 1 en caso contrario.
- 8. La unidad de control debe dirigir el flujo de información a través de los buses, la ALU y la unidad de corrimiento seleccionando los diversos componentes de la Unidad procesadora.
- 9. Una unidad aritmética-lógica (ALU) es un circuito secuencial que realiza un conjunto de microoperaciones de aritmética y lógicas básicas.
- 10. El componente básico de un circuito aritmético es el sumador en paralelo y el de un circuito lógico son las compuertas AND, OR, NOT y XOR.