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Abstract— The present work describes the imple-

mentation of a monocular SLAM system applied to a

wheeled mobile robot moving in an indoor environ-

ment. The whole system and details of each part of

the current implementation will be described. The

parts comprising the system are the estimation filter

together with both motion and measurement mod-

els, as well as a set of computer vision algorithms

for image processing and data association. The im-

plemented visual SLAM makes use of the latest tech-

niques for undelayed landmark initialization which

are required given the partial observability of bearing

only SLAM. Presented results show the performance

of the implementation mainly for robot pose estima-

tion, from which a highly accurate result in robot ori-

entation estimation can be observed.

Keywords— Visual SLAM, Mobile robot,

Monocular vision, Wheeled robot

1 INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has

been an active research topic for the past decades, given

that it solves two of the fundamental problems in order to

build truly autonomous mobile robots. Recently, there is

an increasing interest in using cameras as exteroceptive

sensor for SLAM algorithms. On the other hand, in the

computer vision community there is an equivalent prob-

lem known as Structure from Motion (SfM). A significant

difference between SLAM and SfM exists, whereas the

latter is used for off-line applications in batch processing,

the former is used for on-line applications.

The early work by Smith et.al. [1] established the

statistical basis in the treatment of uncertainties using

Kalman filtering, which set the foundation for SLAM so-

lutions. The most important contribution of this work

was to demonstrate the high correlation between the un-

certainties of the sensor pose and map landmark loca-

tions, and that these correlations grow with time as new

observations are made. Solutions to the SLAM prob-

lems where proposed later applying different versions of

Bayesian filtering techniques [2], being either Gaussian

approaches like EKF (Extended Kalman Filter) [3], UKF

(Unscented Kalman Filter) [4], EIF (Extended Informa-

tion filter (EIF) [5]; or non Gaussian approaches like the

PF (Particle filter) [6].

Earlier works on SLAM were based on using sensors

like sonars and laser range finders. Nowadays, the avail-

able computational power allows the use of digital cam-

eras as the main or even the only environmental sensor.

The main advantage of using cameras for SLAM is that

they provide a large amount of 3D information for po-

tentially very large distances (ideally up to infinity), be-

sides being lightweight and cheap sensors. Moreover, vi-

sual SLAM (vSLAM) can use the accumulated theoreti-

cal knowledge and algorithmic solutions of the computer

vision research community. This can be used to address

two important issues in SLAM, namely feature extraction

and data association.

Two approaches related to environment perception us-

ing computer vision exist, depending on whether the

robot is carrying a monocular or stereo vision system.

The latter has significant implications on the observa-

tion function: stereo vision is able to obtain the 3D co-

ordinates of scene landmarks, whereas in monocular vi-

sion only bearing measurements are observable. Given

the partial observability nature of monocular vSLAM

(also know as bearing-only SLAM), a feature initializa-

tion process is required in order to determine the com-

plete landmark state, mandatory for the estimation filter.

The present work describes the implementation of a

monocular SLAM system applied to a mobile robot mov-

ing on a planar surface for indoor applications. The main

goal is to adapt the general implementation of vSLAM

similar to the ones described in [7] for the special case

of a mobile platform. The paper is organized as follows:

section 2 summarizes the relevant work. Section 3 briefly

describes the formulation of SLAM in general and the de-

tails for the particular case of vSLAM; whereas section 4

outlines the implemented whole system, and also shows

the models used for monocular EKF-SLAM. Results are

presented in section 5 and finally section 6 remarks the

conclusions and future works.

2 RELATED WORK

An important issue in monocular or bearing-only SLAM

is the landmark initialization process, due to the fact that

depth is not measured using a single camera. Moreover,
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in the context of the classical EKF-SLAM solution, a re-

cently observed landmark needs to be fully described by

a Gaussian density in order to be added to the map. Two

different approaches exist, namely Delayed Landmark

Initialization (DLI) and Undelayed Landmark Initializa-

tion (ULI) [8]. DLI has a major disadvantage which is

that new landmarks are not immediately used when they

are observed for the first time, in the correction of the

camera pose. Furthermore, it prevents the use of distant

landmarks (points at infinity) which are useful for orien-

tation estimation [7].

The early work on monocular SLAM of Davison [9],

which used a DLI process, shows that the standard EKF

formulation for SLAM can work properly with a sin-

gle camera as the only source of information. Davi-

son’s approach uses a kind of particle filter to approxi-

mate the landmark depth coordinate, until the distribu-

tion collapses sufficiently in order to be represented by

a Gaussian distribution. However, this approach has the

main limitation that can only deal with nearby landmarks

that exhibit significant parallax during camera motion,

limiting the application to room-scale scenes. Although

Davison’s monocular SLAM has been designed for a 3D

camera motion estimation (6DOF, Degrees of Freedom),

it cannot deal with sudden changes in motion direction

given the constant velocity motion model used.

A widely used method for ULI in monocular SLAM

is the Inverse Depth Parametrization (IDP) [7]. This

parametrization allows efficient and accurate representa-

tion of the initial landmark depth uncertainty, and is able

to work within the standard EKF. Explicit parametriza-

tion of the inverse depth can cope with depth uncertain-

ties by means of a Gaussian distribution, spanning depth

range from nearby up to infinity. IDP is a unified repre-

sentation requiring no special landmark initialization pro-

cess, allowing an immediate contribution to improve the

camera pose estimation.

3 MONOCULAR VISUAL SLAM

3.1 EKF SLAM

Kalman filtering involves the estimation of the state of a

discrete-time dynamic system defined by

xk = f(xk−1,uk−1) +wk, (1)

zk = h(xk) + vk, (2)

where xk is the unobserved system state, uk is the known

control action, zk is the observation, wk ∼ N (0,Qk) is

the process noise, and vk ∼ N (0,Rk) is the observation

noise, all in the time step k.

The state vector x =
[

xT
R xT

M

]T
is composed of

the robot state xR =
[

xr yr θr
]T

, and the map state

xM =
[

xT
1 . . . xT

N

]T
, where xi, i = 1, . . . , N , are

landmarks representing the environment map. As usually

done in SLAM, the map is considered to be static, i.e.

xM,k = xM,k−1 = xM .

The goal of the Kalman filter is to optimally estimate

the state xk given the observations zk up to time k. The

EKF works in two stages: prediction and update. In the

prediction stage the prior estimate is computed

x̂−

k = f(x̂k−1,uk−1)

P−

k = FkPk−1F
T
k +Qk,

(3)

and the update stage corrects the actual estimation using

new information from measurements

Kk = P−

k H
T
k

(

HkP
−

k H
T
k +Rk

)

−1

x̂k = x̂−

k +Kk

(

zk − h(x̂−

k )
)

Pk = (I−KkHk)P
−

k ,

(4)

where Fk and Hk are the Jacobian matrices of the SLAM

process (1) and measurement (2) functions, respectively.

3.2 Landmark parametrizations

A 3D scene point in Euclidean representation is described

by means of its three Cartesian coordinates as

xEU =
[

X Y Z
]T

∈ R
3, (5)

which is projected to an image point on the image plane

using the pin-hole model as

m = KRC
W (xEU − tWC ) ∈ P

2, (6)

where • stands for homogeneous coordinate in the pro-

jective space P
n, K is the camera intrinsic parameters

matrix given by

K =





f/hu 0 u0

0 f/hv v0
0 0 1



 (7)

and {tWC ,RW
C } represents the rigid transformation be-

tween the world (WCS) and camera (CCS) coordinate

systems; f is the focal length, and hu and hv are

the pixels width and height, respectively. Euclidean

points present significant non linearities in the observa-

tion function for monocular SLAM, being inappropri-

ate for the ULI process. The most adequate and widely

used parametrization for ULI is the Anchored Modified

Polar Point (AMPP) [10] also known as Inverse Depth

Parametrization (IDP) [7]. The AMPP is represented

by: the camera position t0 (anchored point) when the

landmark is first observed, the azimuth and elevation an-

gles (γ, φ) of the optical ray (expressed in WCS) joining

t0 =
[

x0 y0 z0
]T

and the observed 3D point, and the

inverse of the distance d from t0 to this point, ρ = 1/d.

The resulting map landmark is

xID =
[

x0 y0 z0 γ φ ρ
]T

∈ R
6. (8)

The projection to the image plane is

m = KRC
W

(

ρ(t0 − tWC ) + d(γ, φ)
)

∈ P
2, (9)

where d(γ, φ) is the unit vector given by the azimuth and

elevation angles, that is

d(γ, φ) =





cosφ sin γ
− sinφ

cosφ cos γ



 .
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The back-projection which is used in the features initial-

ization process is given by

xID =





t0
(γ, φ)
ρ



 =





tWC
g(RW

C K−1m)
ρC



 , (10)

where ρC is the initial inverse depth (prior information),

and g(·) gives azimuth and elevation angles from unit

vector (pointing the optical ray) r =
[

rx ry rz
]T

as

g(r) =

[

arctan(rx/rz)

arctan
(

−ry/
√

r2x + r2z

)

]

=

[

γ
φ

]

.

Further details on IDP can be found in [7].

4 IMPLEMENTATION OF VISUAL SLAM

4.1 General description

The presented implementation of monocular SLAM is

based on a wheeled mobile robot carrying a single cam-

era. All the parameters of the robot/camera system are

considered to be known and are obtained by off-line cal-

ibration procedures. The intrinsic camera parameters are

obtained by calibration using standard techniques [11],

and the rigid transformation or extrinsic parameters relat-

ing the CCS and robot coordinate system (RCS) can also

be obtained experimentally [12].

The implemented monocular SLAM used an ULI ap-

proach based on inverse depth parametrization. As was

previously mentioned, ULI has the main advantage in

that new observed landmarks are immediately used to

improve the estimation. Given that IDP is an over-

parametrization, map landmarks in IDP are converted to

Euclidean representation as soon as they become ade-

quately linear in the measurement function, reducing the

dimension of the SLAM state vector. This conversion

follows the approach presented in [13].

Figure 1 shows a schematic representation of the im-

plemented monocular SLAM system. The main parts

of the implementation are the mobile robot along with

its sensors (odometry and camera), the estimation filter,

and computer vision algorithms for image processing and

data association. The implemented system uses a very

simple map management approach, which is responsible

of landmarks addition and deletion. New landmarks are

added to the map based on a minimum threshold of image

features (Ni), and they are deleted considering a thresh-

old of the rate between the number of times a given map

Environment

Camera

Odometry

Map

Managment

Image

processing

Matching/

RANSAC

Prediction Correction

Figure 1: Monocular visual SLAM system.

landmark is predicted (Np), and the number of times it is

used for the filter correction (Nc). The values used are

Ni = 50 and Nc/Np = 0.5, resulting in a landmark dele-

tion if it is predicted and not used by the filter 50% of the

time.

4.2 Motion model

The model used corresponds to the probabilistic odo-

metric motion model presented in [2]. This model

uses relative motion readings from the robot odome-

try as the control action input, which is comprised of

a first rotation, a translation and a last rotation, u =
[

δrot1 δtrans δrot2
]T

. Given the odometric reading

at time step k − 1, xodom
k−1

=
[

xodom
k−1

yodomk−1
θodomk−1

]T

and at time step k, xodom
k =

[

xodom
k yodomk θodomk

]T
,

control action is composed of

δrot1 = atan2(yodomk − yodomk−1 , xodom
k − xodom

k−1 )− θodomk−1

δtrans =
√

(xodom
k−1

− xodom
k )2 + (yodomk−1

− yodomk )2

δrot2 = θodomk − θodomk−1 − δrot1.

Assuming these variables are affected by zero mean

Gaussian noise with

σrot1 = α1|δrot1|+ α2|δtrans|

σtrans = α3|δtrans|+ α4(|δrot1|+ |δrot2|)

σrot2 = α1|δrot2|+ α2|δtrans|,

where αi, i = 1, . . . , 4 are the motion parameters spe-

cific to the robot used. The covariance matrix represent-

ing the uncertainty in motion action is a diagonal matrix

Pu = diag(σ2
rot1, σ

2
trans, σ

2
rot2). The robot state evolves

according to

xR,k = f(xR,k−1,uk−1,wk−1)




xk

yk
θk



 =





xk−1

yk−1

θk−1



+





δtrans cos(θk−1 + δrot1)
δtrans sin(θk−1 + δrot1)

δrot1 + δrot2



 .

Putting together the robot motion model and the static

map assumption results

xk =

[

xR,k

xM,k

]

=

[

f(xR,k−1,uk−1,wk−1)
xM,k−1

]

,

(11)

which is the process equation for SLAM. A detailed de-

scription of this model can be found in [4].

4.3 Measurement model

Given the SLAM state vector xk composed of the

robot state vector xR and the map state vector xM =
[

xT
�,1 . . . xT

�,i · · · xT
�,N

]T
, where the i-th map

feature x�,i can be represented either in euclidean xEU,i

or inverse depth xID,i parametrization. The measure-

ment function (2) is composed of two steps: first each

map feature is projected to the image plane (in the ac-

tual camera pose) using (6) or (9) depending on the
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Figure 2: Measurement prediction and feature matching.

parametrization; and second, a model for lens radial dis-

tortion is applied. Distorted image points are

zi =

[

ui

vi

]

=

[

u0 +
u−u0

1+κ1r
2

d
+κ2r

4

d

v0 +
v−v0

1+κ1r
2

d
+κ2r

4

d

]

r = rd(1 + κ1r
2
d + κ2r

4
d)

r =

√

(hx(u− u0))
2
+ (hy(v − v0))

2

where m =
[

u v
]T

, κ1 and κ2 are the radial distortion

parameters. The Gaussian additive measurement noise

has a standard deviation of 1 pixel. Figure 2 shows pre-

dicted measurements in image plane where the uncertain-

ties are represented by ellipses (in yellow color). All

the shown uncertainty ellipses follow a specific direction

given by the epipolar point, which is due to the use of

the odometric motion model. Using an adequate motion

model, like the odometric motion model presented here

instead of a constant velocity model, allows a better mea-

surement prediction which also improves the data associ-

ation process.

4.4 Data association

When using a camera as exteroceptive sensor for SLAM,

feature extraction and data association problems can be

addressed by existing algorithms in the computer vi-

sion community. Feature extraction is based on an im-

age interest point detector, being commonly used Harris,

SIFT and SURF detectors. The data association process

seeks for correspondences between predicted measure-

ments and feature descriptors. Moreover, data associa-

tion needs an extra stage in order to reject wrong matches

also known as outliers. The latter is typically done using

the RANSAC algorithm [14].

The proposed approach for feature extraction and data

association is as follows: image features are extracted

using the FAST interest point detector [15], and image

patches are saved as descriptors. The matching process

seeks for correspondences between these patches and in-

terest regions on the image defined by measurement pre-

dictions using prior information given by the filter. Fi-

nally, the 1-Point RANSAC algorithm [16] is used for

outlier rejection. Interest regions for feature matching

are obtained similarly to [17], where the authors propose

to define search regions or bounding boxes in the im-

age plane, by projecting four tangent planes to the 3D

ellipsoids representing uncertainties of map landmarks.

Instead, we propose to directly use the uncertainties of

predicted measurements (in image plane) which are also

used by the filter. Interest regions are defined by bound-

ing boxes which are determined by tangent lines to the

ellipses representing a constant Mahalanobis distance of

predicted measurements. Given a set of predicted mea-

surements {ẑ−i ,R
−

i }, a constant Mahalanobis distance is

expressed by

(z− ẑ−i )
T
(

R−

i

)

−1
(z− ẑ−i ) = k, (12)

which can be represented in homogeneous coordinate

[18] in the projective plane as

mTCm = 0 (13)

where m =
[

u v w
]T

is an homogeneous image

point, and (the conic) C is an homogeneous matrix repre-

senting the uncertainty ellipse. Tangent lines to the conic

are defined as

l = Cm (14)

where l =
[

a b c
]T

with a = 0 for horizontal lines

and b = 0 for vertical ones. Points on both ellipse C and

tangent lines are obtained solving the system of equations

given by (13) and (14) where m =
[

u −c b
]T

and

m =
[

−c v b
]T

for horizontal and vertical tangent

lines, respectively.

Figure 3 shows an indoor image with one predicted

measurement represented by the uncertainty ellipse, to-

gether with the bounding box defined by tangent (verti-

cal and horizontal) lines to the ellipse. This bounding

box defines the image interest region to seek for match-

ing. Moreover, the feature patch (of 41x41 pixels) which

is saved for each image features, and the warped patch

(of 13x13 pixels) are also shown. The latter is obtained

applying a warping transformation based on the camera

predicted pose given by the filter. The similarity mea-

surement used for matching is the Normalized Cross-

Correlation. Results of image feature matching can be

seen in Fig. 2 where crosses (in green color) show

the matching points, corresponding to maximum cross-

correlation values.

Figure 3: Image feature matching. Left: Measurement

prediction, uncertainty and bounding box. Right: interest

region (bottom), feature patch (middle) and warped patch

(top).
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Figure 4: Estimation error in robot pose (xr, yr, θr)
(from top to bottom respectively), together with ±3σ
bounds. Horizontal axis is the algorithm step.
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Figure 5: Ground truth (solid line), odometry (dash-dot

line) and estimated (dashed line) robot path for 12m cor-

ridor.

5 RESULTS

The evaluation of the implemented monocular SLAM

algorithm is performed using the RAWSEEDS dataset

[19]. This dataset includes information from different

sensors taken by a robot moving in an indoor environ-

ment, including a digital camera of 320 × 240 pixels.

In addition, the robot pose ground truth is also avail-

able which is aimed at evaluating the performance of the

SLAM and robot pose estimation algorithms. The motion

model parameters used are: α1 = 1, α2 = 35× 10−3,

α3 = 2× 10−2 y α4 = 5× 10−2; and the measurement

noise is σz = 1 pixel.

Figure 4 shows the estimation error of the robot pose

together with the uncertainties in the estimation given by

±3σ bounds, and Fig. 5 shows the robot path; both of the

same SLAM running. These results are obtained with the

robot moving forward (increasing its x coordinate) along

a corridor similar to Fig. 3. A variation of the error in

the robot’s x coordinate can be observed due to the fact

that a bearing only sensor, like a single camera, cannot

measure the scene depth. However, despite the limited

camera field of view this error can be reduced when the

robot approximate to distant map landmarks. Similarly,

the error in the robot’s y coordinate presents a significant

variation apart from a slight drift, due also to the limited

camera field of view. On the other hand, even though the

error in the robot orientation estimation is low, it grows

significantly when the robot is rotating (near step 300 and

700). The latter can affect the data association process.

At the end of the path of approx. 12m the position error

is near 5cm in the robot x coordinate, and near 15cm in

the y coordinate.

Figure 6 shows the robot pose estimation error together

with the error using robot odometry, similar errors for

both estimated and odometric robot x coordinate can be

appreciated. However, estimated error in y coordinate

is of 1m against 3.5m for odometry apart of being un-

bounded. As previously, a low estimation error in ori-

entation is observed for the whole path. Lastly, Fig. 7

shows the odometric, estimated and ground truth path for

the whole running corresponding to Fig. 6.

6 CONCLUSIONS

The implementation of an EKF-based monocular SLAM

system applied to a wheeled mobile robot was presented.

It is based on the state of the art of undelayed land-

mark initialization using the inverse depth parametriza-

tion. Each part of the presented monocular SLAM system

was shown in details. The implemented algorithm was
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Figure 6: Robot pose odometry (dashed line) and estima-

tion (solid line) error, in (xr, yr, θr) (from top to bottom

respectively). Horizontal axis is the algorithm step.
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Figure 7: Ground truth (solid line), odometry (dash-dot

line) and estimated (dashed line) robot path of length

more than 70m.
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tested using a freely available dataset developed specifi-

cally for visual SLAM evaluation.

Presented results show the behavior of monocular

SLAM focused mainly on robot pose estimation. Even

though a single camera is not able to perceive scene

depth, besides of having a limited field of view, it was

shown that it can be used in monocular SLAM for robot

pose estimation. Furthermore, the precision of the im-

plemented approach used for robot pose estimation was

verified with real data, for both a straight path in a typical

indoor corridor and for a longer paths. Results demon-

strated, as theory suggests that a monocular vision sys-

tem acts as a very precise orientation sensor, mainly due

to the use of inverse depth parametrization for undelayed

landmark initialization.

Future work includes the proposition of a new strategy

for image feature detection and matching, based on robust

image point descriptors. This can improve data associa-

tion and therefore the accuracy of the filter estimation.
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