
Obstacle Avoidance Algorithms

Miroslav Kulich

Czech Technical University in Prague
Czech Institute of Informatics, Robotics and Cybernetics

Intelligent and Mobile Robotics Group

http://imr.ciirc.cvut.cz/people/Mirek

http://imr.ciirc.cvut.cz/people/Mirek


Bug algorithms
Insect inspired

• Point robot operating on the plane

• Only local knowledge of the
environment and a global goal

• Known direction to goal

• Otherwise local sensing
(walls/obstacles and encoders)

• Robot can measure distance
d(x , y) between points x and y

• Reasonable world
• finitely many obstacles in any

finite area
• a line will intersect an obstacle

finitely many times
• Workspace is bounded



Beginner’s strategy
,,Bug0” algorithm

• Known direction to goal

• Otherwise local sensing

1. Head toward goal.

2. Follow obstacles until you
can head toward goal again.

3. Continue.

What can go wrong? Find a map
that will foil Bug 0.

Assume a left-turning robot. Turning direction might be decided

beforehand.



Beginner’s strategy
,,Bug0” algorithm

1. Head toward goal.

2. Follow obstacles until you
can head toward goal again.

3. Continue.
How can we improve Bug 0?

• Add memory
• What information is

available?

• Encoders
• Keep track of robot’s own

motion



Bug 1

• Known direction to goal

• Otherwise local sensing
• wall/obstacles and

encoders

1. Head toward goal.

2. If an obstacle is
encountered, circumnavigate
it AND remember how close
you get to the goal.

3. Return to that closest point
and continue.

• Takes longer to run.

• Requires more
computational effort.



Bug 1 more formally
Let qL0 = qstart
i = 1
loop

repeat
from qLi−1 move toward qgoal

until goal is reached or obstacle encountered at qHi
if goal is reached then

exit
end if
repeat

follow boundary recording point qLi with shortest distance to goal
until qgoal is reached or qHi is re-encountered
if goal is reached then

exit
end if
Go to qLi
if move toward qgoal moves into obstacle then

exit with failure
else

i = i + 1
continue

end if
end loop



Quiz - Bug 1 analysis
What are upper/lower bounds on the path length that the robot takes?

D = straight-line distance from start to
goal
Pi = perimeter of the i th obstacle
Lower bound
What is the shortest distance it might

travel?
Upper bound
What is the longest distance it might

travel?



Quiz - Bug 1 analysis
What are upper/lower bounds on the path length that the robot takes?

D = straight-line distance from start to
goal
Pi = perimeter of the i th obstacle
Lower bound
What is the shortest distance it might

travel? D
Upper bound
What is the longest distance it might

travel?



Quiz - Bug 1 analysis
What are upper/lower bounds on the path length that the robot takes?

D = straight-line distance from start to
goal
Pi = perimeter of the i th obstacle
Lower bound
What is the shortest distance it might

travel? D
Upper bound
What is the longest distance it might

travel? D + 1.5
∑

i Pi



Quiz - Bug 1 analysis
What are upper/lower bounds on the path length that the robot takes?

D = straight-line distance from start to
goal
Pi = perimeter of the i th obstacle
Lower bound
What is the shortest distance it might

travel? D
Upper bound
What is the longest distance it might

travel? D + 1.5
∑

i Pi

What is an environment where the upper bound is required?



A better bug?
,,Bug 2” algorithm

1. Head toward goal.

2. If an obstacle is on the way,
follow it until you hit the
m-line again.

3. Leave the obstacle and
continue toward the goal.



A better bug?
,,Bug 2” algorithm

1. Head toward goal.

2. If an obstacle is on the way,
follow it until you hit the
m-line again.

3. Leave the obstacle and
continue toward the goal.

What can go wrong? Find maps that will foil Bug 2.



A better bug?
Whoops! Infinite loop

1. Head toward goal.

2. If an obstacle is on the way,
follow it until you hit the
m-line again closer to the
goal.

3. Leave the obstacle and
continue toward the goal.



A better bug?
Whoops! Infinite loop

1. Head toward goal.

2. If an obstacle is on the way,
follow it until you hit the
m-line again closer to the
goal.

3. Leave the obstacle and
continue toward the goal.

Is this algorithm better or worse than Bug 1?



Bug 2 more formally

Let qL0 = qstart
i = 1
loop

repeat

from qLi−1 move toward qgoal along the m-line

until goal is reached or obstacle encountered at qHi
if goal is reached then

exit
end if
repeat

follow boundary

until qgoal is reached or qHi is re-encountered or m-line is re-encountered, x is not qHi ,

d(x, qgoal ) < d(qHi , qgoal ) and way to goal is unimpeded
if goal is reached then

exit
end if
if qHi is reached then

return failure
else

qLi = m
i = i + 1
continue

end if
end loop



Head-to-head comparison

Draw world in which Bug 2 does better than Bug 1 (and vice versa)

Bug 2 beats Bug 1 Bug 1 beats Bug 2



Head-to-head comparison

Draw world in which Bug 2 does better than Bug 1 (and vice versa)

Bug 2 beats Bug 1 Bug 1 beats Bug 2



Head-to-head comparison

Draw world in which Bug 2 does better than Bug 1 (and vice versa)

Bug 2 beats Bug 1 Bug 1 beats Bug 2



Bug 1 vs. Bug 2

• Bug 1 is an exhaustive search algorithm

- it looks at all choices before committing

• Bug 2 is a greedy algorithm

- it takes the first thing that looks better

• In many cases, Bug 2 will outperform Bug 1, but.

• Bug 1 has a more predictable performance overall.



Quiz - Bug 2 analysis
What are upper/lower bounds on the path length that the robot takes?

D = straight-line distance from start to
goal
Pi = perimeter of the i th obstacle
Lower bound
What is the shortest distance it might

travel?
Upper bound
What is the longest distance it might

travel?
ni = # of m-line intersection of the i th

obstacle



Quiz - Bug 2 analysis
What are upper/lower bounds on the path length that the robot takes?

D = straight-line distance from start to
goal
Pi = perimeter of the i th obstacle
Lower bound
What is the shortest distance it might

travel? D
Upper bound
What is the longest distance it might

travel?
ni = # of m-line intersection of the i th

obstacle



Quiz - Bug 2 analysis
What are upper/lower bounds on the path length that the robot takes?

D = straight-line distance from start to
goal
Pi = perimeter of the i th obstacle
Lower bound
What is the shortest distance it might

travel? D
Upper bound
What is the longest distance it might

travel? D + 1.5
∑

i
ni
2 Pi

ni = # of m-line intersection of the i th

obstacle



Quiz - Bug 2 analysis
What are upper/lower bounds on the path length that the robot takes?

D = straight-line distance from start to
goal
Pi = perimeter of the i th obstacle
Lower bound
What is the shortest distance it might

travel? D
Upper bound
What is the longest distance it might

travel? D + 1.5
∑

i
ni
2 Pi

ni = # of m-line intersection of the i th

obstacle

What is an environment where the upper bound is required?



Tangent bug
A more realistic Bug

• As presented: global beacons plus contact-based wall following

• The reality: we typically use some sort of range sensing device
that lets us look ahead (but has finite resolution and is noisy)

• Now, let us assume we have a range sensor...



Intervals of Continuity

• Tangent Bug relies on finding endpoints Oi of finite,
continuous segments of ρR



Tangent bug
Basic ideas

• Motion-to-Goal (two variations)
• Move towards the goal until an obstacle is sensed between the

robot and the goal
• Move towards the Oi that maximally decreases a heuristic

distance, e.g. d(x ,Oi ) + d(Oi , qgoal)

• Follow obstacle
• Started if the robot cannot decrease the heuristic distance
• Continuously moves towards the on the followed obstacle in

the same direction as the previous motion-to-goal
• Back to motion-to-goal when it is ,,better” to do so



Heuristic example

At x the robot knows only what it sees and where the goal is,

so it moves toward O2. Note that
the line connecting O2 and goal

passes through an obstacle.

so it moves toward O4. Note that
some ,,thinking” was involved and

the line connecting O4 and the goal
passes through an obstacle.

Choose the point Oi that minimizes d(x ,Oi ) + d(Oi , qgoal).



Motion-To-Goal example

Choose the point Oi that minimizes d(x ,Oi ) + d(Oi , qgoal).



Boundary following

• Problem: What if this distance starts to go up?

• Answer: Start to act like a Bug and follow boundary!

• Move toward the Oi on the followed
obstacle in the ,,chosen” direction while
maintaining dfollowed and dreach.

• dfollowed is the shortest distance between
the sensed boundary and the goal

• dreach is the shortest distance between
blocking obstacle and goal (or my
distance to goal if no blocking obstacle
visible)

• Terminate when dreach < dfollowed



Example: zero sensor range

• Robot moves toward goal until it hits obstacle 1 at H1.
• Pretend there is an infinitely small sensor range and the Oi ,

which minimizes the heuristic is to the right.
• Keep following obstacle until robot can go toward obstacle

again.
• Same situation with second obstacle.
• At third obstacle, the robot turned left until it could not

increase heuristic.
• Dfollowed is distance between M3 and goal, dreach is distance

between robot and goal because sensing distance is zero.



Example: Finite sensor range



Example: Infinite sensor range



Tangent bug algorithm

move towards the goal
repeat

Compute continuous range segments in view.
Move toward n in {T ,Oi} that minimizes
h(x , n) = d(x , n) + d(n, qgoal)

until goal is encountered or
the value of h(x , n) begins to increase

follow boundary continuing in same direction as before repeating
repeat

update {Oi}, dreach and dfollowed
until goal is reached or

a complete cycle is performed (goal is unreachable) or
dreach < dfollowed


