Obstacle Avoidance Algorithms

Czech Technical University in Prague
Czech Institute of Informatics, Robotics and Cybernetics Intelligent and Mobile Robotics Group
http://imr.ciirc.cvut.cz/people/Mirek

Bug algorithms

Insect inspired

- Point robot operating on the plane
- Only local knowledge of the environment and a global goal
- Known direction to goal
- Otherwise local sensing (walls/obstacles and encoders)
- Robot can measure distance $d(x, y)$ between points x and y
- Reasonable world
- finitely many obstacles in any finite area
a line will intersect an obstacle finitely many times
- Workspace is bounded

Beginner's strategy

,"Bug0" algorithm

- Known direction to goal
- Otherwise local sensing

1. Head toward goal.
2. Follow obstacles until you can head toward goal again.
3. Continue.

What can go wrong? Find a map that will foil Bug 0 .

Assume a left-turning robot. Turning direction might be decided beforehand.

Beginner's strategy

,,Bug0" algorithm

1. Head toward goal.
2. Follow obstacles until you can head toward goal again.
3. Continue.

How can we improve Bug 0?

- Add memory
- What information is available?
- Encoders
- Keep track of robot's own motion

Start

Bug 1

- Known direction to goal
- Otherwise local sensing
- wall/obstacles and encoders

1. Head toward goal.
2. If an obstacle is
encountered, circumnavigate it AND remember how close you get to the goal.
3. Return to that closest point and continue.

- Takes longer to run.

- Requires more computational effort.

Bug 1 more formally

Let $q_{0}^{L}=q_{\text {start }}$
$i=1$
loop

repeat

from q_{i-1}^{L} move toward $q_{g o a l}$
until goal is reached or obstacle encountered at q_{i}^{H}
if goal is reached then
exit
end if
repeat
follow boundary recording point q_{i}^{L} with shortest distance to goal
until $q_{\text {goal }}$ is reached or q_{i}^{H} is re-encountered
if goal is reached then exit
end if
Go to q_{i}^{L}
if move toward $q_{\text {goal }}$ moves into obstacle then exit with failure
else

Quiz - Bug 1 analysis

What are upper/lower bounds on the path length that the robot takes?
$D=$ straight-line distance from start to goal
$P_{i}=$ perimeter of the $i^{t h}$ obstacle
Lower bound
What is the shortest distance it might travel?
Upper bound
What is the longest distance it might travel?

Quiz - Bug 1 analysis

What are upper/lower bounds on the path length that the robot takes?
$D=$ straight-line distance from start to goal
$P_{i}=$ perimeter of the $i^{t h}$ obstacle
Lower bound
What is the shortest distance it might travel?

D
Upper bound
What is the longest distance it might travel?

Quiz - Bug 1 analysis

What are upper/lower bounds on the path length that the robot takes?
$D=$ straight-line distance from start to goal
$P_{i}=$ perimeter of the $i^{\text {th }}$ obstacle Lower bound
What is the shortest distance it might travel?

D
Upper bound
What is the longest distance it might travel?

$$
D+1.5 \sum_{i} P_{i}
$$

Quiz - Bug 1 analysis

What are upper/lower bounds on the path length that the robot takes?
$D=$ straight-line distance from start to goal
$P_{i}=$ perimeter of the $i^{t h}$ obstacle
Lower bound
What is the shortest distance it might travel?

D
Upper bound
What is the longest distance it might travel?

$$
D+1.5 \sum_{i} P_{i}
$$

What is an environment where the upper bound is required?

A better bug?

,,Bug 2" algorithm

1. Head toward goal.
2. If an obstacle is on the way, follow it until you hit the m-line again.
3. Leave the obstacle and continue toward the goal.

A better bug?

,,Bug 2" algorithm

1. Head toward goal.
2. If an obstacle is on the way, follow it until you hit the m-line again.
3. Leave the obstacle and continue toward the goal.

What can go wrong? Find maps that will foil Bug 2.

A better bug?

Whoops! Infinite loop

1. Head toward goal.
2. If an obstacle is on the way, follow it until you hit the m-line again closer to the goal.
3. Leave the obstacle and continue toward the goal.

A better bug?

Whoops! Infinite loop

1. Head toward goal.
2. If an obstacle is on the way, follow it until you hit the m-line again closer to the goal.
3. Leave the obstacle and continue toward the goal.

Is this algorithm better or worse than Bug 1?

Bug 2 more formally

```
Let \(q_{0}^{L}=q_{\text {start }}\)
\(i=1\)
loop
    repeat
        from \(q_{i-1}^{L}\) move toward \(q_{g o a l}\) along the \(m\)-line
    until goal is reached or obstacle encountered at \(q_{i}^{H}\)
    if goal is reached then
        exit
    end if
    repeat
        follow boundary
    until \(q_{\text {goal }}\) is reached or \(q_{i}^{H}\) is re-encountered or m-line is re-encountered, \(x\) is not \(q_{i}^{H}\),
    \(d\left(x, q_{\text {goal }}\right)<d\left(q_{i}^{H}, q_{\text {goal }}\right)\) and way to goal is unimpeded
    if goal is reached then
        exit
    end if
    if \(q_{i}^{H}\) is reached then
        return failure
    else
        \(q_{i}^{L}=m\)
        \(i=i+1\)
        continue
    end if
end loop
```


Head-to-head comparison

Draw world in which Bug 2 does better than Bug 1 (and vice versa)

Bug 2 beats Bug 1
Bug 1 beats Bug 2

Head-to-head comparison

Draw world in which Bug 2 does better than Bug 1 (and vice versa)

$$
\text { Bug } 1 \text { beats Bug } 2
$$

Head-to-head comparison

Draw world in which Bug 2 does better than Bug 1 (and vice versa)

Bug 1 vs. Bug 2

- Bug 1 is an exhaustive search algorithm
- it looks at all choices before committing
- Bug 2 is a greedy algorithm
- it takes the first thing that looks better
- In many cases, Bug 2 will outperform Bug 1, but.
- Bug 1 has a more predictable performance overall.

Quiz - Bug 2 analysis

What are upper/lower bounds on the path length that the robot takes?
$D=$ straight-line distance from start to goal
$P_{i}=$ perimeter of the $i^{\text {th }}$ obstacle
Lower bound
What is the shortest distance it might travel?
Upper bound
What is the longest distance it might travel?
$n_{i}=\#$ of m -line intersection of the $i^{t h}$
 obstacle

Quiz - Bug 2 analysis

What are upper/lower bounds on the path length that the robot takes?
$D=$ straight-line distance from start to goal
$P_{i}=$ perimeter of the $i^{\text {th }}$ obstacle
Lower bound
What is the shortest distance it might travel?
Upper bound
What is the longest distance it might travel?
$n_{i}=\#$ of m -line intersection of the $i^{t h}$
 obstacle

Quiz - Bug 2 analysis

What are upper/lower bounds on the path length that the robot takes?
$D=$ straight-line distance from start to goal
$P_{i}=$ perimeter of the $i^{t h}$ obstacle
Lower bound
What is the shortest distance it might travel?
Upper bound
What is the longest distance it might travel? $D+1.5 \sum_{i} \frac{n_{i}}{2} P_{i}$ $n_{i}=\#$ of m -line intersection of the $i^{\text {th }}$
 obstacle

Quiz - Bug 2 analysis

What are upper/lower bounds on the path length that the robot takes?
$D=$ straight-line distance from start to goal
$P_{i}=$ perimeter of the $i^{t h}$ obstacle Lower bound
What is the shortest distance it might travel?

D
Upper bound
What is the longest distance it might travel? $D+1.5 \sum_{i} \frac{n_{i}}{2} P_{i}$ $n_{i}=\#$ of m-line intersection of the $i^{\text {th }}$
 obstacle

What is an environment where the upper bound is required?

Tangent bug
 A more realistic Bug

- As presented: global beacons plus contact-based wall following
- The reality: we typically use some sort of range sensing device that lets us look ahead (but has finite resolution and is noisy)
- Now, let us assume we have a range sensor...

Intervals of Continuity

- Tangent Bug relies on finding endpoints O_{i} of finite, continuous segments of ρ_{R}

Tangent bug

Basic ideas

- Motion-to-Goal (two variations)
- Move towards the goal until an obstacle is sensed between the robot and the goal
- Move towards the O_{i} that maximally decreases a heuristic distance, e.g. $d\left(x, O_{i}\right)+d\left(O_{i}, q_{\text {goal }}\right)$
- Follow obstacle
- Started if the robot cannot decrease the heuristic distance
- Continuously moves towards the on the followed obstacle in the same direction as the previous motion-to-goal
- Back to motion-to-goal when it is ,,better" to do so

Heuristic example

At x the robot knows only what it sees and where the goal is,

so it moves toward O_{2}. Note that the line connecting O_{2} and goal passes through an obstacle.

so it moves toward O_{4}. Note that some ,,thinking" was involved and the line connecting O_{4} and the goal passes through an obstacle.

Choose the point O_{i} that minimizes $d\left(x, O_{i}\right)+d\left(O_{i}, q_{\text {goal }}\right)$.

Motion-To-Goal example

Choose the point O_{i} that minimizes $d\left(x, O_{i}\right)+d\left(O_{i}, q_{\text {goal }}\right)$.

Boundary following

- Problem: What if this distance starts to go up?
- Answer: Start to act like a Bug and follow boundary!
- Move toward the O_{i} on the followed obstacle in the ,,chosen" direction while maintaining $d_{\text {followed }}$ and $d_{\text {reach }}$.
- $d_{\text {followed }}$ is the shortest distance between the sensed boundary and the goal
- $d_{\text {reach }}$ is the shortest distance between blocking obstacle and goal (or my
 visible)
- Terminate when $d_{\text {reach }}<d_{\text {followed }}$

- Robot moves toward goal until it hits obstacle 1 at H_{1}.
- Pretend there is an infinitely small sensor range and the O_{i}, which minimizes the heuristic is to the right.
- Keep following obstacle until robot can go toward obstacle again.
- Same situation with second obstacle.
- At third obstacle, the robot turned left until it could not increase heuristic.

Example: Finite sensor range

Example: Infinite sensor range

Tangent bug algorithm

move towards the goal
repeat
Compute continuous range segments in view.
Move toward n in $\left\{T, O_{i}\right\}$ that minimizes
$h(x, n)=d(x, n)+d\left(n, q_{\text {goal }}\right)$
until goal is encountered or the value of $h(x, n)$ begins to increase
follow boundary continuing in same direction as before repeating repeat
update $\left\{O_{i}\right\}, d_{\text {reach }}$ and $d_{\text {followed }}$
until goal is reached or
a complete cycle is performed (goal is unreachable) or
$d_{\text {reach }}<d_{\text {followed }}$

