
System for robotic e-learning

SyRoTek
Player Proxies and configuration used in PAR course

ver. 1.0

Intelligent and Mobile Robotics Group
The Czech Institute of Informatics, Robotics and Cybernetics

Czech Technical University in Prague

CONTENTS SyRoTek

Contents

1 Introduction 5

2 Proxies 6

2.1 ClientProxy . 6

2.2 LaserProxy . 7

2.3 Position2dProxy . 7

2.3.1 SND driver . 8

3 Configuration 10

CTU FEL, Intelligent and Mobile Robotics Group 3/11

CHAPTER 1. INTRODUCTION SyRoTek

Chapter 1

Introduction

In this documentation the basic Player C++ proxies are described as well as the basics
of the Player’s configuration files. Beside these topics the SND driver used to control the
robot is briefly described. It should help to the new user to get familiar with these concepts
as fast as possible.

The official documentation for more detailed information is of course available. List of
all the proxies offered by Player is stated in [1] and simple overview of how to create the
configuration file is in [2]. But please be aware of the Player’s version you are using and
pay attention to the programming language the documentation is related to (especially C
vs. C++).

CTU FEL, Intelligent and Mobile Robotics Group 5/11

SyRoTek

Chapter 2

Proxies

In the Player’s convention a proxy is a class, which wraps the functionality of a specific
device and provides high level methods to control the device or read required information.
Thus the user doesn’t have to take care of any low level communication protocols, device
connection (this is specified in the configuration file) and other necessities related to the
implementation of the device into the robotic system, e.g. a sensor such a laser scanner.

During the Practical Robotics course only two main proxies are used - LaserProxy, Posi-
tion2dProxy. The classes of these proxies are derived from one ancestor class - ClientProxy.
All these three classes are described below.

2.1 ClientProxy

This class precedes all later described classes. It contains basic proxy information such
a device ID and name, provides interface to set and get property of the device and a data
status. The data status is probably the most important functionality of the class for us.

Method bool IsValid() can be used to check if the data were successfully received. It
returns true in case that any data from the device were received, false is returned otherwise.
Return value is fully handled by the ClientProxy.

Contrary a method bool IsFresh() is user-controlled. Whenever new data are received,
this method automatically returns true. But when the data are read by the user code, a
flag, that the data are already processed, can be set by method void NotFresh(). After
calling NotFresh(), the method IsFresh() returns false until new data are received. This
tells us, for example, in next iteration of our algorithm, that we have already read the data
and no new reading is available since then.

CTU FEL, Intelligent and Mobile Robotics Group 6/11

CHAPTER 2. PROXIES SyRoTek

2.2 LaserProxy

LaserProxy represents the laser scanner attached to the robot. Every laser scanner has
some angle of view, angular and distance resolution and number of points in one scan. All
these information can be retrieved through the LaserProxy.

Number of the points in a scan is returned when calling method uint32 t GetCount().
The angle of view can be determined from values returned by double GetMinAngle() and
double GetMaxAngle(), which return scan range of the latest data in radians. Scanner’s
angular resolution is available via double GetScanRes(), result is in radians, similarly the
distance resolution in millimeters is returned by double GetRangeRes().

When a new measurement is received, the distance of one point can be read using
double GetRange(uint32 t aIndex), where the parameter aIndex is index of the point.
Indices begin with 0 at the left and ends with GetCount() - 1 at the right. Except
double GetRange(uint32 t aIndex) also the operator [] can be used to read the dis-
tance of the point (e.g. myLaser[index]). Bearing of the point in radians, i.e. the relative
angle from the sensor’s heading with positive sense of rotation, is returned by double

GetBearing(uint32 t aIndex). You can also check the intensity of returned signal in
given point by int GetIntensity(uint32 t aIndex).

Beside these basic methods there are several more methods remarkable, which can sim-
plify your work during the course. First of the methods is player point 2d t GetPoint(uint32 t

aIndex). Point returned represents the measured point coordinates with respect to the sen-
sor position (i.e. coordinates are computed from bearing and distance of the point). The
method returns instance of a simple structure player point 2d t containing two public
members px and py representing the coordinates of a point in Cartesian 2D space.

Another useful method is player pose3d t GetPose() which gives the position of
the laser scanner with respect to its parent object - in our case the robot. Structure
player pose3d t is similar to the mentioned player point 2d t, but moreover contains
the third coordinate and rotation of the object - components pz, proll, ppitch, pyaw.

In the end we will describe two methods interesting mainly during playing with robot at
the beginning of the course. These are double GetMinLeft() and double GetMinRight()

which allow to get minimal distance of the measurement on the left and right side of the
scan.

2.3 Position2dProxy

Position2d proxy provides information about position and speed as well as is allows to
control these properties. In the PAR course code this type of proxy is not used only to refer
a position of the robot, but also to control the robot with the SND driver, which provides
one Position2dProxy instance. The SND driver’s detailed description is below.

CTU FEL, Intelligent and Mobile Robotics Group 7/11

2.3. POSITION2DPROXY SyRoTek

Position can be retrieved by methods double GetXPos(), double GetYPos() and double

GetYaw(). Units used in course are meters and radians for an angle. Therefore to use them
in a map, a conversion is necessary. Similarly to the position, the speed can be read by meth-
ods double GetXSpeed(), double GetYSpeed() and double GetYawSpeed(), results are
again in meters or radians per second.

It is also possible to change the odometry value with void SetOdometry(double aX,

double aY, double aYaw) or reset it with void ResetOdometry(), which is equal to
SetOdometry(0, 0, 0).

User can control the robot’s speed directly using the methods void SetSpeed(double

aXSpeed, double aYSpeed, double aYawSpeed), void SetSpeed(double aXSpeed, double

aYawSpeed) or void SetSpeed(player pose2d t vel). All the mentioned methods are
the same except their input arguments. For the Syrotek system y-speed has no meaning
since the robots in the arena are non-holonomic, therefore the option with only X and yaw
speed is recommended when a direct speed control is used. To move the robot, motors have
to be enabled first with void SetMotorEnable(bool enable).

To change the robot’s position use the method void GoTo(player pose 2d pos) or
void GoTo(double aX, double aY, double aYaw) of the SND driver. After calling this
method the driver takes control of the robot and drives it to the required position.

2.3.1 SND driver

SND stands for Smooth Nearness Diagram navigation. It extends the functionality of
ND (Nearness Diagram) driver. The algorithm is designed for the non-holonomic robots
moving in tight spaces, i.e. fits the needs of the Syrotek system. Detailed description of the
algorithm itself was published in paper [4].

SND driver can be found in both simple and real configuration files. It provides one
position2d proxy - this is available in user application. But it requires two position2d
proxies - one as a source of the robot’s position and one as a sink for speed commands.

It has several configuration options where the parameters of the robot can be set, its
maximal speed and position error. Parameters are described in the following list (descrip-
tion is taken from [5]):

• robot radius - The radius of the minimum circle which contains the robot [m]

• min gap width - Minimum passage width the driver will try to exploit [m]

• obstacle avoid dist - Maximum distance allowed from an obstacle [m]

• max speed - Maximum speed allowed [m/s]

• max turn rate - Maximum angular speed allowed [rad/s]

CTU FEL, Intelligent and Mobile Robotics Group 8/11

CHAPTER 2. PROXIES SyRoTek

• goal position tol - Maximum distance allowed from the final goal for the algorithm
to stop. [m]

• goal angle tol - Maximum angular error from the final goal position for the algorithm
to stop. [m]

During the debugging of your application you should pay attention especially to the pa-
rameters concerning the maximum speed.

CTU FEL, Intelligent and Mobile Robotics Group 9/11

SyRoTek

Chapter 3

Configuration

When starting Player the configuration file has to be specified. It tells the Player which
drivers to load, how to set them up and how to create interface for client application.
Simple configuration files are used during the course - files simple.cfg and real.cfg included
in the basic source code provided for the semestral tasks.

It consists of several driver definitions. Each driver means a new instance of the specified
driver started after the Player starts. Drivers are described basically by two mandatory
options - name and provided attachment points. The name specifies the name of the driver
to be loaded (it is not user defined label but name well known to the Player). Option
provides tells the Player what proxies are offered by this driver to the other drivers or
client application. It consists always from the proxy name and unique index (index have
to be unique for given proxy type).

Moreover it is possible to define the driver by additional option keywords. If the driver
expects an input from other driver, it can be specified using requires where expected
proxy is stated. To allow using user hardware the plugin option can be defined with a
name of a shared library containing the driver. As already mentioned at SND driver, each
driver can have itself its own options (e.g. maximum speed, size of the robot, etc.) specific
to each type of the driver.

CTU FEL, Intelligent and Mobile Robotics Group 10/11

BIBLIOGRAPHY SyRoTek

Bibliography

[1] Player 3.0.2 documentation - list of C++ proxies. [Online]. http://playerstage.

sourceforge.net/doc/Player-3.0.2/player/group__player__clientlib_

_cplusplus__proxies.html

[2] Player 3.0.2 documentation - Writing configuration files. [Online]. http:

//playerstage.sourceforge.net/doc/Player-svn/player/group__tutorial_

_config.html

[3] Player 3.0.2 documentation - ClientProxy. [Online]. http://playerstage.

sourceforge.net/doc/Player-3.0.2/player/classPlayerCc_1_1ClientProxy.

html

[4] Durham, J. ; Bullo, F. ”Smooth Nearness-Diagram Navigation” 2008, IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2008. IROS 2008, 690-695

[5] Player 3.0.2 documentation - SND driver. [Online]. http://playerstage.

sourceforge.net/doc/Player-svn/player/group__driver__snd.html

CTU FEL, Intelligent and Mobile Robotics Group 11/11

http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__player__clientlib__cplusplus__proxies.html
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__player__clientlib__cplusplus__proxies.html
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__player__clientlib__cplusplus__proxies.html
http://playerstage.sourceforge.net/doc/Player-svn/player/group__tutorial__config.html
http://playerstage.sourceforge.net/doc/Player-svn/player/group__tutorial__config.html
http://playerstage.sourceforge.net/doc/Player-svn/player/group__tutorial__config.html
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/classPlayerCc_1_1ClientProxy.html
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/classPlayerCc_1_1ClientProxy.html
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/classPlayerCc_1_1ClientProxy.html
http://playerstage.sourceforge.net/doc/Player-svn/player/group__driver__snd.html
http://playerstage.sourceforge.net/doc/Player-svn/player/group__driver__snd.html

	Introduction
	Proxies
	ClientProxy
	LaserProxy
	Position2dProxy
	SND driver

	Configuration

