Fisher Vectors for PolSAR Image Classification
Code used in paper:
Javier Redolfi, Jorge Sánchez, and Ana Georgina Flesia
"Fisher Vectors for PolSAR Image Classification"
IEEE Geoscience and Remote Sensing Letters, 99, Septiembre 2017. (link)
Download
JavierAndresRedolfi/sartb/sartb.tar.gz
Features
The library consist basically of the following python modules:
- PolSAR image manipulation: pseudocolor image generation, force SPD.
- PolSAR datasets: San Francisco Bay, Flevoland and Foulum. Train/test splits generation, manual selection of training points. Accuracy and Confusion Matrix computation.
- Smoothing algorithms: Potts, Graph Cut and Maximun.
- Unary potential generation from Complex Wishart, Real Wishart Mixture and FV (RWM based).
Dependencies
- matplotlib
- numpy
pystruct -> https://pystruct.github.io/
scikit-image -> http://scikit-image.org/
scikit-learn -> scikit-learn.org/
- scipy
Installation on Debian/Ubuntu
(use sudo for Ubuntu)
# apt-get install python2.7 python-matplotlib python-numpy python-skimage python-sklearn python-scipy
- Install vrl using the README provided by the library.
# pip install pystruct
- Install pygco using the gco_python/README.md provided by the library.
Installing the module
- Just uncompress it.
Example: Comparison with paper "Pol-SAR Classification Based on Generalized Polar Decomposition of Mueller Matrix"
Download the dataset and uncompress it: -> https://www.dropbox.com/s/xulk8t5pizoceh5/dataset.tar.gz?dl=0
- Run the script:
$python src/bin/comparison_mueller.py --dataset=path_to_dataset