#acl BecariosGrupo:delete,read,write,admin All:read
= Fisher Vectors for PolSAR Image Classification =
Code used in paper:
Javier Redolfi, Jorge Sánchez, and Ana Georgina Flesia<
>
'''"Fisher Vectors for PolSAR Image Classification"'''<
>
IEEE Geoscience and Remote Sensing Letters, '''99''', Septiembre 2017. ([[http://ieeexplore.ieee.org/abstract/document/8052593/|link]])<
>
== Download ==
[[attachment:JavierAndresRedolfi/sartb/sartb.tar.gz|sartb.tar.gz]]
== Features ==
The library consist basically of the following python modules:
* PolSAR image manipulation: pseudocolor image generation, force SPD.
* PolSAR datasets: San Francisco Bay, Flevoland and Foulum. Train/test splits generation, manual selection of training points. Accuracy and Confusion Matrix computation.
* Smoothing algorithms: Potts, Graph Cut and Maximun.
* Unary potential generation from Complex Wishart, Real Wishart Mixture and FV (RWM based).
== Dependencies ==
* vrl -> http://www.famaf.unc.edu.ar/~jsanchez/efv/
* matplotlib
* numpy
* pygco -> http://vision.csd.uwo.ca/code/gco-v3.0.zip
* pystruct -> https://pystruct.github.io/
* scikit-image -> http://scikit-image.org/
* scikit-learn -> scikit-learn.org/
* scipy
== Installation on Debian/Ubuntu ==
(use sudo for Ubuntu)
{{{#!bash
# apt-get install python2.7 python-matplotlib python-numpy python-skimage python-sklearn python-scipy
}}}
* Install vrl using the README provided by the library.
{{{#!bash
# pip install pystruct
}}}
* Install pygco using the gco_python/README.md provided by the library.
=== Installing the module ===
* Just uncompress it.
== Example: Comparison with paper "Pol-SAR Classification Based on Generalized Polar Decomposition of Mueller Matrix" ==
* Download the dataset and uncompress it: -> https://www.dropbox.com/s/xulk8t5pizoceh5/dataset.tar.gz?dl=0
* Run the script:
{{{#!bash
$python src/bin/comparison_mueller.py --dataset=path_to_dataset
}}}