
Edge Detection in Noisy Images Using the Support
Vector Machines

Hilario Gómez-Moreno, Saturnino Maldonado-Bascón, Francisco López-Ferreras

Signal Theory and Communications Department. University of Alcalá
Crta. Madrid-Barcelona km. 33,600 D.P. 28871

Alcalá de Henares - Madrid (Spain)
{hilario.gomez, saturnino.maldonado, francisco.lopez}@uah.es

Abstract. In this paper, a new method for edge detection in presence of
impulsive noise based into the use of Support Vector Machines (SVM) is
presented. This method shows how the SVM can detect edge in an efficient
way. The noisy images are processed in two ways, first reducing the noise by
using the SVM regression and then performing the classification using the
SVM classification. The results presented show that this method is better than
the classical ones when the images are affected by impulsive noise and,
besides, it is well suited when the images are not noisy.

1 Introduction

The edge detection methods are an important issue for a complete understanding of
the image. The most usual classical methods search for several ways to perform an
approximation to the local derivatives and they mark the edges by searching the
maximum of these derivatives. The Sobel, Prewitt or Roberts filters are some of these
approximations [1]. Other approaches are based in a previously smoothing action in
order to improve the edge detection and to reduce the effect of noise (basically
Gaussian noise) [2]. This pre-filtering process seems to be not adequate when the
noise is impulsive and most edge detectors are very sensitive to the pulses of noise.

In this paper we present a way to detect the edges by using a new point of view.
We do not try to approximate the derivative or to use other mathematics methods.
The main idea in this work is to train the computer to recognize the presence of edges
into an image. In order to perform this idea we use the Support Vector Machines
(SVM) tool that is given good results in other classification problems.

The training is performed using a few own-created images that represents a clearly
defined edges with the edges easily located.

The noise reduction process is performed using the SVM. In this case we use the
information in a 3x3 neighborhood of each pixel to make a regression process and
then replace the pixel value with the regressed value.

The results obtained with no noise are similar to those from previous methods and
clearly superior when compared to some classical methods in noisy images.

2 SVM Classification and Regression

There are several ways to classify, Bayesian decision, neural networks or support
vector machines, for example. In this work we use the SVM classifier since this
method provides good results with a reduced set of data and then we do not require
an intensive training like another methods. Thus the SVM gives us a simple way to
obtain good classification results with a reduced knowledge of the problem. The
principles of SVM have been developed by Vapnik [3] and they are very simple.

In the decision problem we have a number of vectors divided into two sets, and we
must find the optimal decision frontier to divide the sets. The frontier chosen may be
anyone that divides the sets but only one is the optimal election. This optimal election
will be the one that maximizes the distance from the frontier to the data. In the two
dimensional case, the frontier will be a line, in a multidimensional space the frontier
will be an hyperplane. The decision function that we are searching has the next form,

() bxwbf
n

i
ii +=+⋅= ∑

=1

xwx .
(1)

In (1), x is a vector with n components that must be classified. We must find the
vector w and the constant b that makes optimal the decision frontier. The basic
classification process is made by obtaining the sign of the decision function applied
to the given vector, a positive value represents the assignment to one class and a
negative one represents the assignment to the another class.

Normally, we use another form of this decision function that includes the training
input and output vectors information [4]. This new form is,

() ∑
=

+⋅=
l

i
iii byf

1

xxx α .
(2)

The y values that appear into this expression are +1 for positive classification
training vectors and –1 for the negative training vectors. Besides, the inner product is
performed between each training input and the vector that must be classified. Thus,
we need a set of training data (x,y) in order to find the classification function and the
α values that makes it optimal. The l value will be the number of vectors that in the
training process contribute in a high quantity to form the decision frontier. The
election of these vectors is made by looking at the α values, if the value is low the
vector is not significant. The vectors elected are known as support vectors.

Normally the data are not linearly separable and this scheme can not be used
directly. To avoid this problem, the SVM can map the input data into a high
dimensional feature space. The SVM constructs an optimal hyperplane in the high
dimensional space and then returns to the original space transforming this hyperplane
in a non-linear decision frontier. The non-linear expression for the classification
function is given in (3) where K is the non-linear mapping function.

() ()∑
=

+⋅=
l

i
iii bKyf

1

xxx α .
(3)

The choice of this non-linear mapping function or kernel is very important in the
performance of the SVM. The SVM applied uses the radial basis function to perform
the mapping, since the others proved do not work appropriately. This function has the
expression given in (4).

() ()()2
exp, yxyxK −−= γ . (4)

The γ parameter in (4) must be chosen to reflect the degree of generalization that is
applied to the data used. The more data is obtained the less generalization needed in
the SVM. A little γ reflects more generalization and a big one represents less
generalization. Besides, when the input data is not normalized, this parameter
performs a normalization task.

When some data into the sets can not be separated, the SVM can include a penalty
term (C) that makes more or less important the mismatch classification. The more
little is this parameter the more important is the misclassification error. This term and
the kernel are the only parameters that must be chosen to obtain the SVM.

The classification scheme may be easily extended to the case of regression. In this
case the idea is to train the SVM by using y values different from +1 and –1. The
values used are the values known from the function to be obtained. Then, we search
for an approximation function that fits approximately the known values [4].

3 Noise Reduction Training

In this section, we explain how the SVM regression may be used to reduce the
impulse noise into the images in order to apply an edge detection algorithm without
noise interferences.

The main idea is to replace the pixels into noisy image with a new value avoiding
the noise. In order to obtain the new pixel value we use the SVM regression. The
regression training process is shown in Fig. 1.

x-1,y-1 x-1,y x-1,y+1

x,y-1 x,y x,y+1

x+1,y-1 x+1,y x+1,y+1

 Noisy Image

 x,y

 Original Image

Fig. 1. Pixel regression

Fig. 2. Example of noisy training images

For each pixel (x,y) of the noisy image we form a vector containing the values of
the pixels around it (including the pixel itself). This vector will be the input to the
regression function. The output will be the value of the pixel (x,y) of the original
image.

The next step is to find the images to be used into the training process. The images
elected must be simple to avoid an excessive training time but significant enough to
give good results. The option elected was to make controlled images given a gray
scale and with random noise in a known position. In Fig. 2 an example is presented.

In this training images we must control the size and the noise ratio. The images in
Fig. 2 have a 32x32 size and a 20 percent noise (20 percent pixels of the image are
noise). If we use these two images in the training process the number of vectors
processed will be 1953. The number of support vectors after the training process is
634 in this case.

4 Edge Detection Training

In this section we present a way to detect edges by using the SVM classification. In
this case, the decision needed is between "the pixel is part of an edge" or "the pixel is
not part of an edge". In order to obtain this decision we must extract the information
needed from the images. In this work a vector is formed for each pixel, given the
difference between this one and the pixels in a 3x3 neighborhood around it. This way
an eight components vector is calculated at each pixel except for the border of the
image, because in this case the differences can not be calculated. The vectors formed
are used as inputs to the SVM training.

Fig. 3. Training images for edge detection

The images used to train the SVM are shown in Fig. 3. They are images created by
trying to obtain a good model for the detection. The only edges used in the training
are vertical, horizontal and diagonal ones and we expect that the other edges will be
generalized by the SVM. The pixels considered as edges are those into each image
that are in the border between bright and dark zones, i.e. the points in the dark zone
near the bright one and vice versa.

The dark and bright zones are not homogenous but the intensity at each pixel is a
random value (gaussian values). The values at each zone never reach those of the
other zone. By using these random values we try to simulate the no homogenous
surface into a real image. The random nature of the training images makes random
the SVM training, for example, the number of support vector may change every time
we use different images. But the results obtained are very similar in all cases.

A value that must be set in the training process is the mean difference between
dark and bright zones, since this parameter controls the sensibility of the edge
detector. A little difference makes the detector more sensible and a greater one
reduces this sensibility.

5 Edge detection method

When we apply the trained SVM (3) to an image, a value for each pixel into the
image is obtained. This value must be (ideally) a value positive or negative near 1.
We can use the sign of these values to say when a pixel is an edge or not but, this
way, a lost of information is produced. It is better to use the values obtained and say
that there is a gradual change between “no edge” and “edge”. Then, the value
obtained indicates a probability of being an edge or not.

After the process above we must decide the pixels that are considered as edges.
This task can be simplified when we have the edges separated into vertical and
horizontal directions. In this case we search for the pixels that are local maximum in
both directions and the edge image is obtained. The method proposed is able to obtain
these vertical and horizontal edges by using vectors formed only with the horizontal
and vertical differences as input to the SVM (Fig. 4).

x-1,y-1 x-1,y x-1,y+1

x,y-1 x,y x,y+1

x+1,y-1 x+1,y x+1,y+1

Fig. 4. Vectors for vertical and horizontal detection

Fig. 5 shows and example of the process. The original image “house” is a 256x256
eight bits gray-scaled image. The edge images presented are gray-scaled images
where the values from SVM have been translated to gray values, 255 represents edge
detection and 0 represents no edge detection. The intermediate values show a
gradation between these extreme values. The parameters set for this edge detection
were γ = 8e-4, C = 1000, and the mean difference between dark and bright zones in
the training images was 50. Besides, in order to reduces the isolated points considered
as edges we use only the values above a given threshold. In the examples the
threshold is set at 32 in an eight bits gray scale.

Fig. 5. Horizontal and vertical edge detection example.

Fig. 6 shows a comparison between the Canny edge detector and the detector
proposed here. The image used as example presents a complex texture in the walls
due to bricks. Thus, the parameters of the Canny detector have been set trying to
reduce the false edge detection of this bricks.

We can see how the performance of the method proposed is similar to the Canny
edge detector (considered as an standard) although the SVM method is not using any
blurring filter like in the Canny edge detector.

Fig. 6. Comparison of edge detection. (a) Canny edge detector. (b) SVM edge detector.

Fig. 7. Example of noise reduction. (a) Noisy image (b) No noise image

Fig. 8. Comparison of edge detectors. (a) SVM detector (b) Canny edge detector.

6 Results

The results presented here have been obtained by using the LIBSVM [5] as
implementation for the SVM. The programs used were written in C++ and compiled
using the Visual C++ 6.0 compiler. The computer used has a Pentium III processor
with 128 Mbytes RAM.

First we show how the noise reduction process performs. The training process uses
images like in Fig. 2, 32x32 gray-scaled images with a 20 % impulsive noise. In this
case the impulsive noise has white pulses only but the method may be applied in a
similar way to “salt&pepper” noise. The γ parameter of the kernel is elected to obtain
the best results, in this case the value elected is γ = 3e-5. The C parameter must be
elected to obtain accurate results with a reduced number of support vectors. In this
work the parameter has a value C = 1000. A greater value increases the training time

and a more little value decreases the accuracy of the process. The training process
takes about 10 minutes in the case presented. The noise reduction process can be
viewed in Fig. 7. Fig. 7-a shows a corrupted image with impulsive noise of 10 % and
Fig. 7-b shows the image after the noise reduction process explained here.

The example shows that this reduction process is not well suited for denoising
since the recovered image is blurred. However, the impulsive noise disappears from
the image and the edge detection process can be performed. Besides, the blurring is
useful in the edge detection since the textures into the images are more uniform after
blurring and the false detection is reduced.

The next step is to perform the edge detection like previously explained. The
kernel parameter in this case was γ = 8e-4 and the parameter C = 1000 like in the
previous case. The threshold used in this case is 16. In Fig. 8 is shown a comparison
between the SVM method and the Canny edge detector. The parameters of the Canny
edge detector have been set in order to reduce to the maximum the detection of the
impulsive noise like edges. It is clearly that the SVM method is superior in this case.
The only drawback of the method proposed is that the execution takes over 15
seconds while the Canny method takes 1 second.

7 Conclusions

This work shows how the SVM performs the edge detection in presence of impulsive
noise in an efficient way and given good results.

The comparison between the edge detection method proposed here with other
known methods shows that the SVM method is superior when the impulsive noise is
present and it is similar (although slightly inferior) when the image is not noisy.

We think that the method may be improved in execution speed and performance
by optimizing the C++ programs and by using more differences between adjacent
pixels to make edge detection, e.g. using 5x5 windows around a pixel.

References

1. A.K. Jain. "Fundamentals of Digital Image Processing". Englewood Cliffs, NJ, Prentice
Hall, 1989.

2. J.F. Canny. “A computational Approach to Edge Detection”. IEEE Trans. On Pattern
Analysis and Machine Intelligence, vol. 8, pp. 679-698. 1986.

3. V. Vapnik. "The Nature of Statistical Learning Theory". New York, Springer-Verlag, 1995.
4. N. Cristianini and J. Shawe-Taylor. "An introduction to Support Vector Machines and other

kernel-based methods". Cambridge, Cambridge University Press, 2000.
5. C.C. Chang and C.J. Lin. "Libsvm: Introduction and benchmarks".

http://www.csie.ntu.edu.tw/~cjlin/papers.

