1768
Comentario:
|
1770
|
Los textos eliminados se marcan así. | Los textos añadidos se marcan así. |
Línea 43: | Línea 43: |
$$$ G_{LC(Z)} = \frac{G_{LA(Z)}}{1+G_{LA(Z)}} = $$ k_\tauT^2\frac{(K_P + K_I + K_D)z^3 + (K_I - K_D)z^2 + (-K_P - K_D)z + K_D}{2Jz^4 + ((K_P + K_I + K_D)k_\tauT^2 -6 )z^3 + ((K_I - K_D)k_\tauT^2 +6 )z^2 + ((-K_P - K_D)k_\tauT^2 -2)z + K_Dk_\tauT^2} $$ | $$$ G_{LC(Z)} = \frac{G_{LA(Z)}}{1+G_{LA(Z)}} = k_\tauT^2\frac{(K_P + K_I + K_D)z^3 + (K_I - K_D)z^2 + (-K_P - K_D)z + K_D}{1}$${2Jz^4 + ((K_P + K_I + K_D)k_\tauT^2 -6 )z^3 + ((K_I - K_D)k_\tauT^2 +6 )z^2 + ((-K_P - K_D)k_\tauT^2 -2)z + K_Dk_\tauT^2} $$ |
Tabla de Contenidos
Modelo Balancín con Compensador PID
Modelo Continuo
Modelo Discreto
{2Jz4 + ((K_P + K_I + K_D)k_\tauT2 -6 )z3 + ((K_I - K_D)k_\tauT2 +6 )z2 + ((-K_P - K_D)k_\tauT2 -2)z + K_Dk_\tauT^2} $$