
Visual homography-based pose estimation of a

quadrotor using spectral features

Gastón Araguás, Claudio Paz, Gonzalo Perez Paina, Luis Canali
Centro de Investigación en Informática para la Ingenieŕıa (CIII),
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Abstract—Pose estimation of Unmanned Aerial Ve-
hicles (UAV) using cameras is currently a very active
task in computer and robotic vision. This is mainly be-
cause of the use of robots in GPS-denied environments.
However, the use of visual information for ego-motion
estimation presents several difficulties, such as features
search, data association, inhomogeneous features distri-
bution in the image. This work addresses these issues
by the use of the so-called spectral features, and a
down-looking monocular camera rigidly attached to a
quadrotor. We propose a visual position and orientation
estimation algorithm based on the discrete homography
constraint induced by the presence of planar scenes.
This homography constraint results more appropriate
than the well-known epipolar constraint, which vanishes
for a zero translation and loses rank in the case of planar
scenes. The pose estimation algorithm is tested in a sim-
ulated dataset and compared with the corresponding
ground truth.

Keywords—Motion estimation, Quadrotor, spectral
features, discrete homography.

I. Introduction

In the last years quadrotors have gained popularity in
entertainment, aero-shooting and many other civilian or
military applications, mainly because of their low cost,
great controllability, etc. Between other tasks, they are a
good choice for operation at low altitude, in cluttered sce-
narios or even for indoor applications. Such environments
limit the use of GPS or compass measurements which
are indeed excellent options for attitude determination
in wide open outdoor areas [11], [1]. These constraints
have motivated, over the last years, the extensive use of
on-board cameras as a main sensor for state estimation
[13], [14], [4]. In this context, we present a new approach
to estimate the self-motion of a quadrotor in indoor en-
vironments for stationary flights, using a down-looking
camera for translation and rotation calculation. Stationary
flights or hovering is a particular flight mode which consists
in achieving that the six-degrees-of-freedom of the robot
remain fixed around a state as stable as possible. This is
an advantageous condition to point a camera downwards
and to compute correspondences between images using
homography. As a continuation of the work presented in
[2], we propose the utilization of a fixed number of patches
distributed on each image of the sequence to determine
the self-motion of the camera, based on the plane-induced
homography that relates the patches in two consecutive

images. The pose of the camera (and UAV) is estimated
in a “dead-reckoning” way, performing a time integration
of self-motion parameters determined between images. We
concentrate in the XY-position and the heading angle
estimation in order to fuse these parameters with the
on-board IMU and altimeter sensors measurements. The
camera self-motion is estimated using the homography
induced by the (assumed flat) floor, and the corresponding
points are obtained on the frequency domain. This spectral
information corresponds to an image patch which we call
spectral feature [2], [3]. These kind of features perform
better than the interest points based on the image intensity
when observing a floor with homogeneous texture. More-
over, because their position in the image plane is previously
selected, they are always well distributed.

The paper is organized as follows: Section II gives
an overview of the related works about the image-to-
image transformation estimation. Section III details the
homography-based pose estimation, with a review of the
so-called plane-induced homography. In this section the
homography decomposition used to obtain the translation
and rotation of the camera is also presented; and in order
to estimate the homography the so-called spectral features
are introduced in Subsection III-C. The implementation
details and the algorithms are presented in Section IV.
Results of the estimation parameters are presented in
Section V, and finally Section VI remarks the conclusions
and future work.

II. Related work

A number of spatial and frequency domain approaches
have been proposed to estimate the image-to-image trans-
formation between two views of a planar scene. Most of
them are limited to similarity transformations. Spatial
domain methods need corresponding points, lines, conics,
etc. [6], [8], [9], whose identification in many practical
situations is non-trivial, thereby limiting their applica-
bility. Scale, rotation, and translation invariant features
have been popular facilitating recognition under these
transformations. Geometry of multiple views of the same
scene has been a subject of extensive research over the past
decade. Important results relating corresponding entities
such as points and lines can be found in [6] [8]. Recent work
has also focused on more complex entities such as conics
and higher-order algebraic curves [9]. However, these ap-
proaches depend on extracting corresponding entities such



as points, lines or contours and do not use the abundant
information present in the form of the intensity values
in the multiple views of the scene. Frequency domain
methods are in general superior to methods based on
spatial features [8] because the entire image information
is used for matching. They also avoid the crucial issues
regarding the selection of the best features.

Our work proposes the use of a fixed number of patches
distributed on each image of the sequence to determine
the pose change of a moving camera. The visual self-
motion measurement is estimated using the homography
induced by the (assumed flat) floor, and the corresponding
points are obtained on the frequency domain. This spectral
information corresponds to an image patch which we call
spectral feature. These kind of features perform better
than the interest points based on the image intensity when
observing a floor with homogeneous texture. Moreover,
because their position in the image plane is previously
selected, they are always well distributed.

The transformation between two images taken from
different views (with a moving camera) contains infor-
mation about the spatial transformation of the views, or
the camera movement. Considering a downward-looking
camera, and assuming that the floor is a planar surface,
all the space points imaged by the camera are coplanar and
there is a homography between the world and the image
planes. Under this constraint, if the camera center moves,
the images taken from different points of view are also
related by a homography. The spatial transformation that
relates both views can be completely determined from this
homography between images.

III. Homography-based pose estimation

The visual pose estimation is based on the principle
that two consecutive images of a planar scene are re-
lated by a homography. The planar scene corresponds to
the floor surface, which is assumed to be relatively flat,
observed by the down-looking camera on the UAV. The
spatial transformation of the camera, and therefore of
the UAV, is encoded in this homography. Knowing the
homography matrix that relates both images, the trans-
formation parameters that describe the camera rotation
and translation can be obtained.

In order to determine the homography induced by the
planar surface, a set of corresponding points on two consec-
utive images must be obtained. This process is performed
selecting a set of features in the first image and finding the
corresponding set of features in the second one. Then, the
image coordinates of each feature in both images conform
the set of corresponding image points needed to calculate
the homography.

The image features used in our approach are the so-
called spectral features, a Fourier domain representation
of an image patch. Selecting a set of spectral features in
both images (the same number with the same size, and
position), the displacement of each feature can be obtained
using the Fourier shift theorem. This displacement, in ad-
dition to the feature center, determines the correspondence
between features in both images.

A. Review of plane-induced homography

Given a 3D scene point P, and two coordinate systems,
CSA and CSB , the coordinates of the point P on each one
can be denoted by XA and XB respectively. If RB

A ∈ SO(3)
is the rotation matrix that changes the representation of a
point in CSA to CSB , and TB ∈ R

3×1 is the translation
vector of the origin of CSA w.r.t CSB (expressed in CSB),
then the representations of the point P relate each other
as

XB = RB
AXA + TB . (1)

We suppose now that the point P belongs to a plane π,
denoted in the coordinate system CSA by its normal nA.
Therefore, the following plane equation holds

(nA)T XA

dA

= 1, (2)

where dA is the distance of the plane π to CSA. Plugging
(2) into (1) we have

XB =

(

RB
A +

TB

dA

(nA)T

)

XA = HB
AXA, (3)

with

HB
A

.
=

(

RB
A +

TB

dA

(nA)T

)

. (4)

The matrix HB
A is a plane-induced homography, in this

case induced by the plane π. As can be seen, this matrix
encodes the transformation parameters that relates both
coordinates systems, (RB

A and TB), and the structure
parameters of the environment (nA and dA).

Considering now a moving camera associated to the
coordinate system CSA at time tA and by CSB at time
tB , according to the pin-hole camera model the relation
between the 3D points and their projections are given by

λAxA = XA; λBxB = XB (5)

where λA ∈ R
+ and λB ∈ R

+. Using (5) in equation (3)
we have

λBxB = HB
A λAxA ⇒ xB = λHB

A xA. (6)

Given that both vectors xB and λHB
A xA have the same

direction

xB × λHB
A xA = x̂BHB

A xA = 0, (7)

with x̂B the skew-symmetric matrix associated to xB . The
equation (7) is known as the planar epipolar restriction,
and holds for all 3D points belonging to the plane π.
Assuming that the camera is pointing to the ground
(downward-looking camera) and that the scene structure
is approximately a planar surface, all the 3D points “seen”
by the camera will hold this restriction.

The homography HB
A represents the camera coordi-

nate systems transformation between instant tA and tB:
hence, it contains the information of the camera rotation
and translation. It can be estimated knowing more than
four corresponding points between two images. These cor-
respondences are calculated in the spectral domain, by
means of the spectral features. The process is detailed in
subsection III-C.



B. Homography decomposition

Following [12] we can decompose H in order to obtain
a non-unique solution (exactly four different solutions)
{

Ri, ni,
Ti

di

}

, and then adding some extra data for dis-

ambiguation we arrive to the appropriate
{

RB
A , nA, TB

dA

}

solution.

1) Normalization: Given that the planar epipolar con-
straint ensures equality only in the direction of both
vectors (equation (7)), what we really have after the
homography estimation is λH, that is1

Hλ = λH = λ

(

R +
T

d
nT

)

. (8)

The unknown factor λ included in Hλ can be found as
follows. Consider the product

HT
λ Hλ = λ2 (I + Q) (9)

with I the identity, Q = anT + naT + ||a||2nnT and a =
1
d
RT T ∈ R

3×1. The vector a × n, perpendicular to a and

n, is an eigenvector of HT
λ Hλ associated to the eigenvalue

λ2, being that

HT
λ Hλ(a × n) = λ2(a × n). (10)

So, if λ2 is an eigenvalue of HT
λ Hλ, then |λ| is a singular

value of Hλ. It is easy to show that Q in (9) has one
positive, one zero and one negative eigenvalue, what means
that λ2 is the second ordered eigenvalue of HT

λ Hλ and |λ|
will be the second ordered singular value of Hλ. That is,
if σ1 > σ2 > σ3 are the singular values of Hλ, then

H = ±Hλ

σ2
(11)

To get the right sign of H, the positive depth condition
in (6) must be applied. In order to ensure that all the
considered points are in front of the camera, all 3D points
in plane π projected in the image plane must fulfill

(xj
B)T Hx

j
A =

1

λj

> 0, ∀j = 1, 2, . . . , n. (12)

where
(

x
j
A, x

j
B

)

are the projections of all points {P}n
j=1

lying on the plane π, at time tA and tB respectively.

2) Estimation of n: The homography H induced by the
plane π preserves the norm of any vector in the plane, i.e.
given a vector r such that nT r = 0, then

Hr = Rr (13)

and therefore ||Hr|| = ||r||. Consequently, knowing the
space spanned by the vectors that preserve the norm under
H, the perpendicular vector n is also known.

The matrix HT H is symmetric, and therefore admits
eigenvalue decomposition. Being σ2

1 , σ2
2 , σ2

3 the eigenvalues

1To avoid the abuse of notation we do not use here the sub and
supra indexes A and B that refers to the corresponding coordinate
systems.

and v1, v2, v3 the eigenvectors of HT H, then

HT Hv1 = σ2
1v1, HT Hv2 = v2,

HT Hv3 = σ2
3v3

(14)

since by the normalization σ2
2 = 1. That is, v2 is perpen-

dicular to n and T, so its norm is preserved under H.
From (14) it can be shown that the norm of the following
vectors

u1
.
=

√
1−σ2

3
v1+

√
σ2

1
−1v3√

σ2

1
−σ2

3

,

u2
.
=

√
1−σ2

3
v1−

√
σ2

1
−1v3√

σ2

1
−σ2

3

(15)

is preserved under H too, as well as all vectors in the sub-
spaces spanned by

S1 = span {v2, u1} , S2 = span {v2, u2} (16)

Therefore, there exist two possible planes that can induce
the homography H, π1 and π2, defined by the normal
vectors to S1 and S2

n1 = v2 × u1, n2 = v2 × u2. (17)

3) Estimation of R: The action of H over v2 and u1

is equivalent to a pure rotation

Hv2 = R1v2, Hu1 = R1u1 (18)

since both vectors are orthogonal to n1. The rotation of
n1 can be computed as

R1n1 = Hv2 × Hu1. (19)

From (18) and (19) we have

R1 = [Hv2, Hu1, Hv2 ×Hu1][v2, u1, n1]T . (20)

Considering now the set {v2, u2, n2}, in the same way
we arrive to

R2 = [Hv2, Hu2, Hv2 ×Hu2][v2, u2, n2]T . (21)

Once R and n are known, the estimation of T

d
is

direct. However, it must be noted that the term T

d
nT in

H introduces a sign ambiguity, since T

d
nT = −T

d
(−nT ),

therefore the number of possible solutions rises to four,
{

R1, n1, T1

d1

}

,
{

R1, −n1, −T1

d1

}

,

{

R2, n2, T2

d2

}

,
{

R2, −n2, −T2

d2

} (22)

In order to ensure that the plane inducing the homography
H appears in front of the camera, each normal vector
ni must fulfill nz > 0, and therefore only two solutions
remain. These two solutions are both possible physically,
but given that most of the time the camera on the UAV
is facing-down, we choose the solution with the nz compo-
nent closest to zero.



C. Spectral features correspondence

The so-called spectral feature refers to the Fourier
domain representation of an image patch of 2n × 2n, where
n ∈ N

+ is set accordingly to the allowed image displace-
ment [2]. The power of 2 of this patch size is selected based
on the efficiency of the Fast Fourier Transform (FFT) algo-
rithm. The number and position of spectral features in the
image are set beforehand. Even though a minimum of four
points are needed to estimate the homography, a higher
number of features are used to increase the accuracy and
the RANSAC algorithm [7] is used for outliers elimination.

Consider two consecutive frames, where spectral fea-
tures on each image were computed. To determine the
correspondence between features is equivalent to determine
the displacement between them. This displacement can be
obtained using the spectral information by means of the
Phase Correlation Method (PCM) [10]. This method is
based on the Fourier shift theorem, which states that the
Fourier transforms of two identical but displaced images
differ only in a phase shift.

Given two images iA and iB of size N × M differing
only in a displacement (u, v), their Fourier transforms are
related by

IA(ωx, ωy) = e−j(uωx+vωy)IB(ωx, ωy), (23)

and therefore this displacement can be obtained from (23)
using the cross-power spectrum of the given transforma-
tions IA and IB

IAI∗

B

|IA||I∗

B | = e−j(uωx+vωy). (24)

The inverse transform of (24) is an impulse located exactly
in (u, v), which represents the displacement between the
two images

F−1[e−j(uωx+vωy)] = δ(x − u, y − v). (25)

Using the discrete FFT (Fast Fourier Transform) algo-
rithm instead of the continuous version, the result will be
a pulse signal centered in (u, v) [15].

D. Homography estimation

The previous subsection describes how to calculate the
displacement between two images using PCM. Applying
this method to each image patch pair, the displacement

Fig. 1. Estimation of the rotation and translation between two
consecutive images based on spectral features.

Fig. 2. Displacements between patches.

between spectral features is determined. The set of corre-
sponding points required to estimate the homography can
be constructed with the patch centers of the first image
and the displaced patch centers of the second one, that is

{xAi
↔ xAi

+ ∆di = xBi
} (26)

where ∆di represents the displacement between the i-th
spectral feature, and xAi

the center of the i-th spectral
feature in the CSA. This is schematically shown in the
zoomed area of Fig. 1. As shown in section III-A, this set
of corresponding points is related by a homography from
which, using linear methods plus nonlinear optimization,
the associated homography matrix can be computed [8].

In Fig. 2 a real set of spectral features is shown, where
the black crosses represent each patch center and the
yellow circles represent the output of PCM.

It is important to note that the number, size, and
position of spectral features are set beforehand: therefore,
neither a search nor a correspondence process needs to
be performed. Moreover, due to the fact that the spectral
features use the frequency spectrum of the image intensity
as feature descriptor, they result to be more robust than
the gradient-based features, which in general work only in
presence of corners in the image.

IV. Implementation

Summarizing, Alg. 1 shows the proposed procedure to
estimate the position and orientation, Alg. 2 shows the
procedure to determine the displacement between patches,
and in Alg. 3 the homography decomposition process is
detailed.

Algorithm 1 Position and orientation estimation.

function poseEstimation(it, it−1)
Extract patches pi t and pi t−1 from it y it−1

for all {pi t, pi t−1} do
∆di ← findDisplacement(pi t, pi t−1)
xi t ← xi t−1 + ∆di

end for
Hλ ← findHomography(xi t, xi t−1)
R, n, T/d← getRtn(Hλ)
return R, n, T/d

end function



Algorithm 2 Patches displacement determination.

function findDisplacement(pi t, pi t−1)
Pi t ← FastFourierTransform(pi t)
Pi t−1 ← FastFourierTransform(pi t−1)
C ← CrossPowerSpectrum(Pi t, Pi t−1)
r ← InverseFastFourierTransform(c)
∆di ← argmax r
return ∆di

end function

V. Results

The evaluation of the proposed visual pose estimation
approach is performed with synthetic images obtained
from a simulated quadrotor. In order to be able to generate
a six degrees of freedom motion similar to a real quadrotor
a simulated dynamic model was used. This allows to
get the truth robot position and orientation which are
then used to crop a sequence of images from a big one
representing the observed flat surface. The ground truth
pose is also used for evaluation purposes. The simulation
of the quadrotor is based on Simulink, and the dynamic
model is presented in [5]. Figure 3 shows an example of
the path followed by the quadrotor, used to generate the
synthetic dataset.

The path consists on a change of altitude followed by
two loops maintaining constant radius. During the loops,
the heading angle, also called yaw angle, was set to grow
up to 2π radians.

The images were obtained from a virtual downward-
looking camera following the path described above, cutting
portions of 640 × 480 from a bigger image of uniform
distributed noise in order to simulate a carpet. The virtual
camera was configured with a pixel size of 5.6µm and a
focal length of approx. 1mm. The algorithm was set with
42 patches of 128 × 128 pixels, equally distributed in the
image.

In Figure 4 the estimated parameters together with the

Fig. 3. Simulated position of a quadrotor with a six-degrees-of-
freedom motion.
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Fig. 4. Estimation of the XY-position and yaw angle of the UAV
during a 20s flight.

ground truth are shown. The graphic on the top shows
the X position estimation of the UAV, which performs a
total of 2.5m of change in the complete trajectory. The Y
position estimation is plotted in the middle, and it has
a similar behavior to the X one. As can be seen, the
estimation error remains bounded in both axes all the time.
The last graphic shows the yaw angle estimation, which
follows the ground truth with a very small error.

VI. Conclusions

In this work a new approach for visual estimation
of the pose change of a quadrotor with a down-looking
camera was presented. The proposed algorithm is based
on the plane-induced homography that relates two views
of the floor. The downward-looking camera is used to
estimate the corresponding points for the homography
estimation based on spectral features. The main advantage
of using spectral features as in this implementation, is that
the typical correspondence process does not need to be
performed.

The evaluation of the visual algorithm using a synthetic
dataset has shown that the XY-position is estimated with-
out significant absolute error, despite the typical accumu-
lated error of the integration process. It is important to
note that the view changes introduced by the orientation
change (roll and pitch) over the flight did not induce any
considerable error in the XY-position estimation. Likewise,
the estimation of the heading (yaw) angle has shown to
be accurate enough to be used in a IMU-camera fusion
schema.



Algorithm 3 Homography matrix decomposition.

function getRtn(Hλ)
Uλ, Σλ, V T

λ ← SVDecomp(Hλ)
H ← Hλ/σ2

U , Σ, V T ← SVDecomp(H)
[

v1 v2 v3

]

← V

u1 ←
v1

√

1− σ2

3
+ v3

√

σ2

1
− 1

√

σ2

1
− σ2

3

; u2 ←
v1

√

1− σ2

3
− v3

√

σ2

1
− 1

√

σ2

1
− σ2

3

n1 ← v2 × u1 ; n2 ← v2 × u2

Choose only the two physically possible solutions (this ensures that n1 and n2 have nz positive component)
U1 ←

[

v2 u1 n1

]

; U2 ←
[

v2 u2 n2

]

W1 ←
[

Hv2 Hu1 Hv2 ×Hu1

]

; W2 ←
[

Hv2 Hu2 Hv2 ×Hu2

]

R1 ←W1UT

1 ; R2 ←W2UT

2

T1/d← (H −R1)n1 ; T2/d← (H −R2)n2

Choose the solution with nz of each normal plane vector closest to zero
return R, n, T/d

end function
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