Visual homography-based pose estimation of a quadrotor using spectral features

Gastón Araguás, Claudio Paz, Gonzalo Perez Paina, Luis Canali

2nd Latin American Congress on Computational Intelligence Universidade Tecnológica Federal do Paraná Curitiba-Paraná, Brazil October 13-16

http://ciii.frc.utn.edu.ar

Outline

Introduction and objectives

Homography-based pose estimation

Implementation and results

Conclusion and future work

Flying robots Autonomous flight Common sensors

Flying robots

Fixed-wing airplanes

Helicopters

Quadrotors

Quadrotors are in the focus of interest because ...

- ▶ are inexpensives
- are easy to build and to maintain
- are easy to control
- can keep position
- are appropriate for autonomous flight

Autonomous flight

Low level control

- maintain attitude, stabilize
- disturbance compesation

High level control

- drift compesation
- obstacle avoidance
- localization and mapping
- navigation to a point

▶ ...

Common sensors

Inertial sensors

Camera

Sonar

r Magnetic compass GPS

Problems

- sensors are noisy
- measurements can be partial
- potentially missing

Common sensors

Inertial sensors

Camera

Sonar

ar Magnetic compass GPS

Problems

- sensors are noisy
- measurements can be partial
- potentially missing
- sensor fusion is required

Common sensors

Problems

- sensors are noisy
- measurements can be partial
- potentially missing
- sensor fusion is required

Challenge

Improve the visual pose estimation algorithm

Homography-based pose estimation

Considerations

- two images of a planar scene are related by a homography
- ▶ a downward-looking camera observes the floor (assumed flat)
- the homography encodes the spatial transformation of the camera

Relation in 3D coordinates

Given a 3D scene point \boldsymbol{P} and two coord. systems CS_A and CS_B

$$\boldsymbol{X}_B = \boldsymbol{R}_A^B \boldsymbol{X}_A + \boldsymbol{T}_B. \tag{1}$$

Relation in 3D coordinates

Given a 3D scene point \boldsymbol{P} and two coord. systems CS_A and CS_B

$$\boldsymbol{X}_B = \boldsymbol{R}_A^B \boldsymbol{X}_A + \boldsymbol{T}_B. \tag{1}$$

If \boldsymbol{P} belongs to a plane π

$$\frac{(\boldsymbol{n}_A)^T \boldsymbol{X}_A}{d_A} = 1,$$
(2)

Relation in 3D coordinates

Given a 3D scene point \boldsymbol{P} and two coord. systems CS_A and CS_B

$$\boldsymbol{X}_B = \boldsymbol{R}_A^B \boldsymbol{X}_A + \boldsymbol{T}_B. \tag{1}$$

If ${\boldsymbol{P}}$ belongs to a plane π

$$\frac{(\boldsymbol{n}_A)^T \boldsymbol{X}_A}{d_A} = 1,$$
(2)

then

$$\boldsymbol{X}_{B} = \left(\boldsymbol{R}_{A}^{B} + \frac{\boldsymbol{T}_{B}}{d_{A}}(\boldsymbol{n}_{A})^{T}\right)\boldsymbol{X}_{A} = \boldsymbol{H}_{A}^{B}\boldsymbol{X}_{A},$$
(3)

with

$$\boldsymbol{H}_{A}^{B} \doteq \left(\boldsymbol{R}_{A}^{B} + \frac{\boldsymbol{T}_{B}}{d_{A}}(\boldsymbol{n}_{A})^{T}\right).$$
(4)

Camera projection

Considering a moving camera, the coordinate system at time t_A can be represented by the CS_A , and at time t_B by the CS_B . That is

$$\lambda_A \boldsymbol{x}_A = \boldsymbol{X}_A; \quad \lambda_B \boldsymbol{x}_B = \boldsymbol{X}_B \tag{5}$$

with $x_A, x_B \in \mathbb{P}^2$ (homogeneous coordinates).

(6)

Plane-induced homography

Camera projection

Considering a moving camera, the coordinate system at time t_A can be represented by the CS_A , and at time t_B by the CS_B .

That is

$$\lambda_A \boldsymbol{x}_A = \boldsymbol{X}_A; \quad \lambda_B \boldsymbol{x}_B = \boldsymbol{X}_B \tag{5}$$

with $m{x}_A, m{x}_B \in \mathbb{P}^2$ (homogeneous coordinates). Given that $m{X}_B = m{H}_A^B m{X}_A$ $m{x}_B = \lambda m{H}_A^B m{x}_A$

with $\lambda = \frac{\lambda_A}{\lambda_B}$.

Camera projection

Considering a moving camera, the coordinate system at time t_A can be represented by the CS_A , and at time t_B by the CS_B .

That is

$$\lambda_A \boldsymbol{x}_A = \boldsymbol{X}_A; \quad \lambda_B \boldsymbol{x}_B = \boldsymbol{X}_B \tag{5}$$

with $x_A, x_B \in \mathbb{P}^2$ (homogeneous coordinates). Given that $X_B = H^B_A X_A$ $x_B = \lambda H^B_A x_A$ (6)

with $\lambda = \frac{\lambda_A}{\lambda_B}$.

Then, from a set of corresponding points $\{x_A^i \leftrightarrow x_B^i\}$ (with i > 4), the homography can be estimated.

Phase Correlation Method

Given two displaced images $i_A(x,y) = i_B(x-u,y-v)$, their Fourier transforms are related by

$$I_A(\omega_x, \omega_y) = e^{-j(u\omega_x + v\omega_y)} I_B(\omega_x, \omega_y),$$
(7)

$$\frac{I_A I_B^*}{|I_A||I_B^*|} = e^{-j(u\omega_x + v\omega_y)}.$$
(8)

Corresponding points

 $\{\boldsymbol{x}_{A_i} \leftrightarrow \boldsymbol{x}_{A_i} + \Delta \boldsymbol{d}_i = \boldsymbol{x}_{B_i}\}$ (9)

Real set of spectral features displacement estimation

$$\{ \boldsymbol{x}_{A_i} \leftrightarrow \boldsymbol{x}_{A_i} + \Delta \boldsymbol{d}_i = \boldsymbol{x}_{B_i} \}$$
 (10)

Homography decomposition

From $\{ oldsymbol{x}_A^i \leftrightarrow oldsymbol{x}_B^i \}$ we have

$$\boldsymbol{H}_{\lambda} = \lambda \left(\boldsymbol{R} + \frac{\boldsymbol{T}}{d} \boldsymbol{n}^{T} \right)$$
(11)

The estimation of λ , \boldsymbol{n} , $\frac{\boldsymbol{T}}{d}$ and \boldsymbol{R} results in:

$$\left\{ \boldsymbol{R}_{1}, \boldsymbol{n}_{1}, \frac{\boldsymbol{T}_{1}}{d_{1}} \right\}, \quad \left\{ \boldsymbol{R}_{1}, -\boldsymbol{n}_{1}, \frac{-\boldsymbol{T}_{1}}{d_{1}} \right\},$$

$$\left\{ \boldsymbol{R}_{2}, \boldsymbol{n}_{2}, \frac{\boldsymbol{T}_{2}}{d_{2}} \right\}, \quad \left\{ \boldsymbol{R}_{2}, -\boldsymbol{n}_{2}, \frac{-\boldsymbol{T}_{2}}{d_{2}} \right\}$$

$$(12)$$

- Only two are fisically possible (points in front of the camera).
- The correct transformation is chosen by applying a motion restriction.

Implementation and simulation results

OpenCV library for image processing and computer vision algorithm.

Conclusion and future work

- Appropriated for a sensor fusion schema (x, y and ψ)
- Decomposition does not require high computational cost
- The use of Spectral features present some benefits (easy to initialize, no need to search, balanced distribution)
- They can be used together with the classical intensity features
- The z coordinates is obtained from another sensor (barometer, sonar)
- Testing in real quadrotors, fusion with IMU and another sensors, add z to the state vector

Visual homography-based pose estimation of a quadrotor using spectral features

Gastón Araguás

garaguas@frc.utn.edu.ar

Thanks for your attention.