Orientation estimation fusing a downward looking camera and inertial sensors for a hovering UAV

Gastón Araguás Claudio Paz David Gaydou Gonzalo Perez Paina

Research Center in Informatics for Engineering (CIII) National Technological University, Córdoba Faculty, Argentina http://ciii.frc.utn.edu.ar

16*th* International Conference on Advanced Robotics School of Engineering Universidad de la República del Uruguay November 25-29

Outline

Introduction and objectives

2 Visual yaw angle estimation

- Rotation estimation
- Spectral features

3 Orientation estimation

- Orientation representation
- Double correction stage

Implementation and results

- Visual yaw angle estimation
- Camera-IMU orientation estimation

6 Conclusion and future work

Introduction and objectives

Unmanned Aerial Vehicles (UAV) - Quadrotors

- Advantages: inexpensives, easy to build and to maintain, lightweight and easy to control.
- Disadvantages: very limited payload, and computational resources.

Some applications like inspection or indoor navigation require stationary fly or hovering \longrightarrow orientation estimation.

Introduction and objectives

Unmanned Aerial Vehicles (UAV) - Quadrotors

- Advantages: inexpensives, easy to build and to maintain, lightweight and easy to control.
- Disadvantages: very limited payload, and computational resources.

Some applications like inspection or indoor navigation require stationary fly or hovering \longrightarrow orientation estimation.

Introduction and objectives

Unmanned Aerial Vehicles (UAV) - Quadrotors

- Advantages: inexpensives, easy to build and to maintain, lightweight and easy to control.
- Disadvantages: very limited payload, and computational resources.

Some applications like inspection or indoor navigation require stationary fly or hovering \longrightarrow orientation estimation.

Objectives

Orientation estimation algorithm fusing spectral features based visual yaw angle estimation, and inertial measurements with an EKF (double correction stage).

Visual yaw angle estimation - Rotation estimation

A 3D scene point $M = \begin{bmatrix} X & Y & Z & 1 \end{bmatrix}^T \in \mathbb{P}^3$ is projected to the point $m = \begin{bmatrix} u & v & 1 \end{bmatrix}^T \in \mathbb{P}^2$ on the image plane, as (pin-hole model)

sm = PM = K[R|t]M

where (R, t) relates the WCS and the CCS.

Visual yaw angle estimation - Rotation estimation

A 3D scene point $M = \begin{bmatrix} X & Y & Z & 1 \end{bmatrix}^T \in \mathbb{P}^3$ is projected to the point $m = \begin{bmatrix} u & v & 1 \end{bmatrix}^T \in \mathbb{P}^2$ on the image plane, as (pin-hole model)

$$sm = PM = K[R|t]M$$

where (R, t) relates the WCS and the CCS. For a downward looking camera and planar scene (Z = 0)

$$s\boldsymbol{m} = K[R|\boldsymbol{t}] \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = K \begin{bmatrix} \boldsymbol{r}_1 \ \boldsymbol{r}_2 \ \boldsymbol{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix},$$

or

$$sm = HM$$

with

$$H = K \begin{bmatrix} \boldsymbol{r}_1 \ \boldsymbol{r}_2 \ \boldsymbol{t} \end{bmatrix}.$$

Visual yaw angle estimation - Rotation estimation

A 3D scene point $M = \begin{bmatrix} X \ Y \ Z \ 1 \end{bmatrix}^T \in \mathbb{P}^3$ is projected to the point $m = \begin{bmatrix} u \ v \ 1 \end{bmatrix}^T \in \mathbb{P}^2$ on the image plane, as (pin-hole model)

$$sm = PM = K[R|t]M$$

where (R, t) relates the WCS and the CCS. For a downward looking camera and planar scene (Z = 0)

$$s\boldsymbol{m} = K[R|\boldsymbol{t}] \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = K \begin{bmatrix} \boldsymbol{r}_1 \ \boldsymbol{r}_2 \ \boldsymbol{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix},$$

or

$$sm = HM$$
,

with

$$H = K \begin{bmatrix} \boldsymbol{r}_1 \ \boldsymbol{r}_2 \ \boldsymbol{t} \end{bmatrix}.$$

For a moving camera, at time t_A

$$s_A \boldsymbol{m}_A = H_{WA} \boldsymbol{M},$$

for the next camera frame, at time t_B

$$s_B \boldsymbol{m}_B \approx H_{WB} \boldsymbol{M}.$$

For smooth motion $s_A \approx s_B$

 $\boldsymbol{m}_A \approx H_{BA} \boldsymbol{m}_B,$

with $H_{BA} = (H_{WB})^{-1}H_{WA}$ the homography that relates corresponding points $m_A \leftrightarrow m_B$.

Visual yaw angle estimation - Rotation estimation

A 3D scene point $M = \begin{bmatrix} X \ Y \ Z \ 1 \end{bmatrix}^T \in \mathbb{P}^3$ is projected to the point $m = \begin{bmatrix} u \ v \ 1 \end{bmatrix}^T \in \mathbb{P}^2$ on the image plane, as (pin-hole model)

$$sm = PM = K[R|t]M$$

where (R, t) relates the WCS and the CCS. For a downward looking camera and planar scene (Z = 0)

$$s\boldsymbol{m} = K[R|\boldsymbol{t}] \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = K \begin{bmatrix} \boldsymbol{r}_1 \ \boldsymbol{r}_2 \ \boldsymbol{t} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix},$$

or

$$sm = HM$$

 $H = K \begin{bmatrix} \boldsymbol{r}_1 & \boldsymbol{r}_2 & \boldsymbol{t} \end{bmatrix}.$

with

For a moving camera, at time t_A

$$s_A \boldsymbol{m}_A = H_{WA} \boldsymbol{M},$$

for the next camera frame, at time t_B

$$s_B \boldsymbol{m}_B \approx H_{WB} \boldsymbol{M}.$$

For smooth motion $s_A \approx s_B$

$$\boldsymbol{m}_A \approx H_{BA} \boldsymbol{m}_B,$$

with $H_{BA} = (H_{WB})^{-1}H_{WA}$ the homography that relates corresponding points $m_A \leftrightarrow m_B$. Neglecting the roll and pitch angle

$$oldsymbol{m}_A = H_{BA}oldsymbol{m}_B pprox egin{bmatrix} R_z & oldsymbol{t} \ oldsymbol{0} & 1 \end{bmatrix} oldsymbol{m}_B$$

 \longrightarrow Euclidean transformation.

Visual yaw angle estimation - Spectral features

Phase Correlation Method

Given two images i_A and i_B differing only in a displacement (u, v), such as

$$i_A(x,y) = i_B(x-u,y-v),$$

their Fourier transform are related by

$$I_a(\omega_x, \omega_y) = e^{-j(u\omega_x + v\omega_y)} I_b(\omega_x, \omega_y).$$

The cross power spectrum (CPS) is defined as

$$\frac{F(\omega_x, \omega_y)G^*(\omega_x, \omega_y)}{|F(\omega_x, \omega_y)||G^*(\omega_x, \omega_y)|},$$

where G^* is the complex conjugate of G.

$$Q(\omega_x, \omega_y) = \frac{I_a(\omega_x, \omega_y)I_b^*(\omega_x, \omega_y)}{|I_a(\omega_x, \omega_y)||I_b^*(\omega_x, \omega_y)|}$$
$$= e^{-j(u\omega_x + v\omega_y)},$$

where $Q(\omega_x, \omega_y)$ is the correlation phase matrix, and the inverse transform is an impulse located in (u, v)

$$\mathcal{F}^{-1}[Q(\omega_x, \omega_y)] = q(x, y)$$

= $\delta(x - u, y - v).$

Orientation estimation - Orientation representation

The orientation estimation is performed using the EKF and quaterion orientation representation $\boldsymbol{q} = \begin{bmatrix} q_0 & q_1 & q_2 & q_3 \end{bmatrix}^T$ with $||\boldsymbol{q}|| = 1$.

Orientation estimation - Orientation representation

The orientation estimation is performed using the EKF and quaterion orientation representation $\boldsymbol{q} = \begin{bmatrix} q_0 & q_1 & q_2 & q_3 \end{bmatrix}^T$ with $||\boldsymbol{q}|| = 1$.

Given the angular velocity vector $\boldsymbol{\omega} = \begin{bmatrix} \omega_x \ \omega_y \ \omega_z \end{bmatrix}^T$, changes in orientation can be expressed by

$$\dot{\boldsymbol{q}} = rac{1}{2} \boldsymbol{q} imes \begin{bmatrix} 0 \\ \boldsymbol{\omega} \end{bmatrix},$$

which represents the time derivative of the orientation quaternion, also written as

$$\dot{oldsymbol{q}} = rac{1}{2} oldsymbol{\Omega}(oldsymbol{\omega}) oldsymbol{q},$$

Orientation estimation - Orientation representation

The orientation estimation is performed using the EKF and quaterion orientation representation $\boldsymbol{q} = \begin{bmatrix} q_0 & q_1 & q_2 & q_3 \end{bmatrix}^T$ with $||\boldsymbol{q}|| = 1$.

Given the angular velocity vector $\boldsymbol{\omega} = \begin{bmatrix} \omega_x \ \omega_y \ \omega_z \end{bmatrix}^T$, changes in orientation can be expressed by

$$\dot{\boldsymbol{q}} = rac{1}{2} \boldsymbol{q} imes \begin{bmatrix} 0 \\ \boldsymbol{\omega} \end{bmatrix},$$

which represents the time derivative of the orientation quaternion, also written as

$$\dot{oldsymbol{q}} = rac{1}{2} oldsymbol{\Omega}(oldsymbol{\omega}) oldsymbol{q},$$

where $\Omega(\omega)$ is the skew-symmetric matrix associated to the vector ω , such that

$$\dot{\boldsymbol{q}} = rac{1}{2} \begin{bmatrix} 0 & -\omega_x & -\omega_y & -\omega_z \\ \omega_x & 0 & \omega_z & -\omega_y \\ \omega_y & -\omega_z & 0 & \omega_x \\ \omega_z & \omega_y & -\omega_x & 0 \end{bmatrix} \boldsymbol{q}.$$

Orientation estimation - Camera/IMU fusion

Double correction stage EKF

- Prediction: gyroscope measurements.
- Correction:
 - accelerometers measurements,
 - visual yaw angle estimation.

Orientation estimation - Camera/IMU fusion

Double correction stage EKF

- Prediction: gyroscope measurements.
- Correction:
 - accelerometers measurements,
 - visual yaw angle estimation.

Extended Kalman Filter

Prediction:

$$\hat{\boldsymbol{x}}_{k}^{-} = F_{k-1}\hat{\boldsymbol{x}}_{k-1}$$
$$P_{k}^{-} = F_{k-1}P_{k-1}F_{k-1}^{T} + Q_{k-1}$$

Correction:

$$K_{k} = P_{k}^{-} H_{k}^{T} (H_{k} P_{k}^{-} H_{k}^{T} + R_{k})^{-1}$$
$$\hat{x}_{k} = x_{k}^{-} + K_{k} (z_{k} - h_{k} (\hat{x}_{k}^{-}))$$
$$P_{k} = (I - K_{k} H_{k}) P_{k}^{-}$$

Prediction:

$$F_k = I + \frac{\Delta t}{2} \mathbf{\Omega}(\boldsymbol{\omega})$$

Orientation estimation - Camera/IMU fusion

Double correction stage EKF

- Prediction: gyroscope measurements.
- Correction:
 - accelerometers measurements,
 - visual yaw angle estimation.

Extended Kalman Filter

Prediction:

$$\hat{\boldsymbol{x}}_{k}^{-} = F_{k-1}\hat{\boldsymbol{x}}_{k-1}$$
$$P_{k}^{-} = F_{k-1}P_{k-1}F_{k-1}^{T} + Q_{k-1}$$

Correction:

$$K_{k} = P_{k}^{-} H_{k}^{T} (H_{k} P_{k}^{-} H_{k}^{T} + R_{k})^{-1}$$
$$\hat{x}_{k} = x_{k}^{-} + K_{k} (z_{k} - h_{k} (\hat{x}_{k}^{-}))$$
$$P_{k} = (I - K_{k} H_{k}) P_{k}^{-}$$

Prediction:

$$F_k = I + \frac{\Delta t}{2} \mathbf{\Omega}(\boldsymbol{\omega})$$

• First correction stage:

$$h_{ak}(\boldsymbol{q}) = g \begin{bmatrix} 2q_1q_3 - 2q_2q_0 \\ 2q_2q_3 + 2q_1q_0 \\ q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

with
$$\boldsymbol{z}_a = \begin{bmatrix} a_x \ a_y \ a_z \end{bmatrix}^T$$
.

Orientation estimation - Camera/IMU fusion

Double correction stage EKF

- Prediction: gyroscope measurements.
- Correction:
 - accelerometers measurements,
 - visual yaw angle estimation.

Extended Kalman Filter

Prediction:

$$\hat{x}_{k}^{-} = F_{k-1}\hat{x}_{k-1}$$

 $P_{k}^{-} = F_{k-1}P_{k-1}F_{k-1}^{T} + Q_{k-1}$

Correction:

$$K_{k} = P_{k}^{-} H_{k}^{T} (H_{k} P_{k}^{-} H_{k}^{T} + R_{k})^{-1}$$
$$\hat{x}_{k} = x_{k}^{-} + K_{k} (z_{k} - h_{k} (\hat{x}_{k}^{-}))$$
$$P_{k} = (I - K_{k} H_{k}) P_{k}^{-}$$

• First correction stage:

$$h_{ak}(\boldsymbol{q}) = g \begin{bmatrix} 2q_1q_3 - 2q_2q_0 \\ 2q_2q_3 + 2q_1q_0 \\ q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

with
$$\boldsymbol{z}_a = \begin{bmatrix} a_x \ a_y \ a_z \end{bmatrix}^T$$
.

• Second correction stage:

$$\psi = \arctan\left(\gamma\right)$$

where
$$\gamma = rac{2(q_0q_3+q_1q_2)}{q_0^2+q_1^2-q_2^2-q_3^2},$$

Prediction:

$$F_k = I + \frac{\Delta t}{2} \mathbf{\Omega}(\boldsymbol{\omega})$$

Orientation estimation - Camera/IMU fusion

Double correction stage EKF

- Prediction: gyroscope measurements.
- Correction:
 - accelerometers measurements,
 - visual yaw angle estimation.

Extended Kalman Filter

Prediction:

$$\hat{\boldsymbol{x}}_{k}^{-} = F_{k-1}\hat{\boldsymbol{x}}_{k-1}$$

 $P_{k}^{-} = F_{k-1}P_{k-1}F_{k-1}^{T} + Q_{k-1}$

Correction:

$$K_{k} = P_{k}^{-} H_{k}^{T} (H_{k} P_{k}^{-} H_{k}^{T} + R_{k})^{-1}$$
$$\hat{x}_{k} = x_{k}^{-} + K_{k} (z_{k} - h_{k} (\hat{x}_{k}^{-}))$$
$$P_{k} = (I - K_{k} H_{k}) P_{k}^{-}$$

Prediction:

$$F_k = I + \frac{\Delta t}{2} \mathbf{\Omega}(\boldsymbol{\omega})$$

• First correction stage:

$$h_{ak}(\boldsymbol{q}) = g \begin{bmatrix} 2q_1q_3 - 2q_2q_0 \\ 2q_2q_3 + 2q_1q_0 \\ q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

with
$$\boldsymbol{z}_a = \begin{bmatrix} a_x \ a_y \ a_z \end{bmatrix}^T$$
.

• Second correction stage:

$$\psi = \arctan\left(\gamma\right)$$

where
$$\gamma = rac{2(q_0q_3+q_1q_2)}{q_0^2+q_1^2-q_2^2-q_3^2},$$

with
$$\boldsymbol{z}_h = \begin{bmatrix} \cos \psi \, \sin \psi \end{bmatrix}^T$$
,

and

$$h_{hk}(\boldsymbol{q}) = \left[egin{array}{c} rac{1}{\sqrt{\gamma^2 + 1}} \ rac{\gamma}{\sqrt{\gamma^2 + 1}} \end{array}
ight]$$

Gonzalo F. Perez Paina (UTN, Argentina) 16th International Conference on Advanced Robotics

Implementation and results

- OpenCV library for image processing and computer vision algorithm.
- MAV dataset of the sFly project ¹, containing
 - Image sequence obtained by a forward and a downward looking camera.
 - Measurements from an inertial Measurement Unit (IMU).
 - Ground thruth information given by a Vicon system.

¹http://www.sfly.org

Implementation and results - Visual yaw angle estimation

Implementation and results - Visual yaw angle estimation

Implementation and results - Estimated quaternion

Implementation and results - Estimated Euler angles

Implementation and results - IMU only vs. Camera/IMU

Gonzalo F. Perez Paina (UTN, Argentina)

16th International Conference on Advanced Robotics

Conclusion and future work

- New approach for quadrotor orientation estimation fusing inertial measurements with a downward looking camera.
 - Inertial measurements are mainly for roll and pitch angles estimation,
 - and yaw angle is estimated by the camera using spectral features.
- Measurement fusing is based on a double correction stage EKF.
- Experimental results have been obtained using a public dataset of a hovering UAV.
- Even thought the visual yaw angle estimation has the typically accumulated error, it can be used to reduce the IMU drift.
- Camera-IMU orientation fusion presents a significantly reduction in both the bias and drift compared with the IMU only orientation estimation.
- Future work includes the estimation of the position (pose), and the implementation in a real setup.

Orientation estimation fusing a downward looking camera and inertial sensors for a hovering UAV

Gastón Araguás Gonzalo F. Perez Paina {garaguas,gperez}@scdt.frc.utn.edu.ar

Orientation estimation fusing a downward looking camera and inertial sensors for a hovering UAV

Gastón Araguás Gonzalo F. Perez Paina {garaguas,gperez}@scdt.frc.utn.edu.ar

Thanks for your attention.