Bienvenido: Ingresar
location: Diferencias para "Vision/ProyectosVision/RobotVision2012"
Diferencias entre las revisiones 11 y 33 (abarca 22 versiones)
Versión 11 con fecha 2012-04-25 19:10:51
Tamaño: 1808
Editor: JorgeSanchez
Comentario:
Versión 33 con fecha 2012-04-26 12:45:25
Tamaño: 3276
Editor: Jaarac
Comentario:
Los textos eliminados se marcan así. Los textos añadidos se marcan así.
Línea 12: Línea 12:
Línea 13: Línea 14:
  
Línea 24: Línea 25:
  * J. van de Weijer, C. Schmid, J. Verbeek, D. Larlus. "Learning Color Names for Real-World Applications", IEEE TIP, 2009.   * J. van de Weijer, C. Schmid, J. Verbeek, D. Larlus, ''Learning Color Names for Real-World Applications'', IEEE TIP, 2009.
Línea 28: Línea 29:
  * K. van de Sande, T. Gevers and C. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, IEEE TPAMI, 2010   * K. van de Sande, T. Gevers and C. Snoek, ''Evaluating Color Descriptors for Object and Scene Recognition'', IEEE TPAMI, 2010
Línea 33: Línea 34:

hg clone https://proyectos.ciii.frc.utn.edu.ar/hg/robot_vision_2012
Línea 42: Línea 45:
 * GMM: aprendido sobre training1+training2+training3  * GMM: aprendido sobre training1+training2+training3, para ''N = 8, 16 y 32''
Línea 46: Línea 49:
 * SGD: hinge loss, 20 iteraciones  * SGD: hinge loss, ''20, 50 y 100'' iteraciones, ''lambda = 1e-2, 1e-3 y 1e-4'', training sobre ''training1'' y testeando sobre ''training2''. La clasificación se realizo con argmax.
Línea 49: Línea 52:
|| ||||||20 iteraciones||||||||50 iteraciones||||||||100 iteraciones||
||lambda\ngauss||8||16||32||||8||16||32||||8||16||32||
||1e-3|| 1382 || 1334 || 1414 |||| 1376 || 1352 || 1426 |||| 1382 || 1356 || 1422 ||
||1e-4|| 1462 || 1422 || 1466 |||| 1462 || 1400 || 1478 |||| 1462 || 1396 || 1476 ||
||1e-5|| 1318 || 1402 || 1444 |||| 1358 || 1368 || 1394 |||| 1378 || 1384 || 1322 ||
/* ||1e-2|| 872 || 984 || 928 |||| 886 || 990 || 930 |||| 890 || 992 || 940 || */
Línea 50: Línea 59:
||1||2||
||3||4||
[[attachment:experimento_1_25_abril_2012.txt]]

== 26 abril 2012 ==
=== Experimento 1 ===
==== Configuración ====

 * Igual que el experimento anterior, pero se agrego 64 gaussianas.

 * SGD: hinge loss, ''20'' iteraciones, ''lambda = 1e-4'', training sobre ''training1'' o ''training2'' y testeando siempre sobre ''training3''. La clasificación se realizo con argmax y con thr=-0.1.

==== Resultados ====
|| ||||||||20 iteraciones argmax training1 ||||||||||20 iteraciones thr=-0.1 training1||
||lambda\ngauss||8||16||32||64||||8||16||32||64||
||1e-4|| -405 || -153 || -127 || -161 |||| 194 || 362 || 355 || 399 ||

[[attachment:experimento_1_train1_val3_argmax_26_abril_2012.txt]]
[[attachment:experimento_1_train1_val3_-0.1_26_abril_2012.txt]]

Robot Vision 2012

Experimentos realizados para la 4º edición de la competencia 'Robot Vision Challenge - ImageCLEF'.

Robot Vision 2012 Web Site

Cosas que vamos a tener que probar

Repositorio con los scripts para replicar los experimentos

hg clone https://proyectos.ciii.frc.utn.edu.ar/hg/robot_vision_2012

25 abril 2012

Experimento 1

Configuración

  • Descriptores: SIFT sobre grilla regular (DSIFT de vlfeat), patchs 32x32, paso=8, L2-norm., D=128
  • PCA: subespacio aprendido sobre training1+training2+training3, D=80
  • GMM: aprendido sobre training1+training2+training3, para N = 8, 16 y 32

  • IFV: gradientes resp. medias y varianzas, alpha=0.5, pnorm=2.0
  • SGD: hinge loss, 20, 50 y 100 iteraciones, lambda = 1e-2, 1e-3 y 1e-4, training sobre training1 y testeando sobre training2. La clasificación se realizo con argmax.

Resultados

20 iteraciones

50 iteraciones

100 iteraciones

lambda\ngauss

8

16

32

8

16

32

8

16

32

1e-3

1382

1334

1414

1376

1352

1426

1382

1356

1422

1e-4

1462

1422

1466

1462

1400

1478

1462

1396

1476

1e-5

1318

1402

1444

1358

1368

1394

1378

1384

1322

experimento_1_25_abril_2012.txt

26 abril 2012

Experimento 1

Configuración

  • Igual que el experimento anterior, pero se agrego 64 gaussianas.
  • SGD: hinge loss, 20 iteraciones, lambda = 1e-4, training sobre training1 o training2 y testeando siempre sobre training3. La clasificación se realizo con argmax y con thr=-0.1.

Resultados

20 iteraciones argmax training1

20 iteraciones thr=-0.1 training1

lambda\ngauss

8

16

32

64

8

16

32

64

1e-4

-405

-153

-127

-161

194

362

355

399

experimento_1_train1_val3_argmax_26_abril_2012.txt experimento_1_train1_val3_-0.1_26_abril_2012.txt

None: Vision/ProyectosVision/RobotVision2012 (última edición 2013-08-10 22:52:45 efectuada por Jaarac)