8053
Comentario:
|
11160
|
Los textos eliminados se marcan así. | Los textos añadidos se marcan así. |
Línea 10: | Línea 10: |
* Aumentar los conjuntos de datos con la versión espejada de las imágenes | * --(Aumentar los conjuntos de datos con la versión espejada de las imágenes)-- |
Línea 35: | Línea 35: |
* En training1 el recorrido del robot es contrario al caso de training[23]. * Las imágenes de training3 son tomadas de noche |
|
Línea 36: | Línea 39: |
[[attachment:training1_rgb_69.jpg|{{attachment:training1_rgb_69.jpg|rgb_69|width=200}}]] [[attachment:training1_rgb_71.jpg|{{attachment:training1_rgb_71.jpg|rgb_71|width=200}}]] [[attachment:training1_rgb_73.jpg|{{attachment:training1_rgb_73.jpg|rgb_73|width=200}}]] [[attachment:training1_rgb_75.jpg|{{attachment:training1_rgb_75.jpg|rgb_75|width=200}}]] |
|
Línea 37: | Línea 44: |
{{attachment:training2_rgb_93.jpg}} | [[attachment:training2_rgb_93.jpg|{{attachment:training2_rgb_93.jpg|rgb_93|width=200}}]] [[attachment:training2_rgb_95.jpg|{{attachment:training2_rgb_95.jpg|rgb_95|width=200}}]] [[attachment:training2_rgb_97.jpg|{{attachment:training2_rgb_97.jpg|rgb_97|width=200}}]] [[attachment:training2_rgb_99.jpg|{{attachment:training2_rgb_99.jpg|rgb_99|width=200}}]] |
Línea 39: | Línea 49: |
[[attachment:training3_rgb_60.jpg|{{attachment:training3_rgb_60.jpg|rgb_60|width=200}}]] [[attachment:training3_rgb_62.jpg|{{attachment:training3_rgb_62.jpg|rgb_62|width=200}}]] [[attachment:training3_rgb_64.jpg|{{attachment:training3_rgb_64.jpg|rgb_64|width=200}}]] [[attachment:training3_rgb_66.jpg|{{attachment:training3_rgb_66.jpg|rgb_66|width=200}}]] |
|
Línea 102: | Línea 116: |
* Descriptores: SIFT sobre grilla regular (DSIFT de vlfeat), patchs 32x32, paso=8, L2-norm., D=128 | * Descriptores: SIFT sobre grilla regular (DSIFT de vlfeat), patchs 32x32, paso=8, L2-norm., D=128, 5 escalas, factor=0.707 |
Línea 142: | Línea 156: |
Se realiza una prueba con distintos valores de DSIFT_STEP (8 y 16) y aumento el conjunto de entrenamiento haciendo un flip left-right de las imágenes antes de calcular DSIFT. Flip=0, indica sin aumentar el conjunto; Flip=1 indica aumentando el conjunto de entrenamiento con las imágenes flipeadas. Al final de este experimento se muestra la configuración que resulta más apropiada. |
|
Línea 159: | Línea 175: |
||||<rowstyle="font-weight: bold;"> Avg. || 603 || 866 || 863 || 903 || 984 || 1059 || 1071 || 1123 || | |||| Avg. || 603 || 866 || 863 || 903 || 984 || 1059 || 1071 || 1123 || |
Línea 168: | Línea 184: |
||||<rowstyle="font-weight: bold;"> Avg. || 632 || 791 || 877 || 864 || 913 || 938 || 1009 || 1025 || | |||| Avg. || 632 || 791 || 877 || 864 || 913 || 938 || 1009 || 1025 || |
Línea 175: | Línea 191: |
|| Tr. || Te. || 8 || 16 || 32 || 64 || 128 || 256 || 512 || 1024 || || 1,2 || 3 || -357 || -105 || 45 || 59 || 185 || 199 || 233 || 411 || || 2,3 || 1 || 1569 || 1703 || 1787 || 1795 || 1887 || 1949 || 1995 || 1999 || || 3,1 || 2 || 1666 || 1880 || 2018 || 2076 || 2142 || 2182 || 2182 || 2190 || ||||<rowstyle="font-weight: bold;"> Avg. || 959 || 1159 || 1283 || 1310 || 1405 || 1443 || 1470 || 1533 || |
|| Tr. || Te. || 8 || 16 || 32 || 64 || 128 || '''256''' || 512 || 1024 || || 1,2 || 3 || -357 || -105 || 45 || 59 || 185 || '''199''' || 233 || 411 || || 2,3 || 1 || 1569 || 1703 || 1787 || 1795 || 1887 || '''1949''' || 1995 || 1999 || || 3,1 || 2 || 1666 || 1880 || 2018 || 2076 || 2142 || '''2182''' || 2182 || 2190 || |||| Avg. || 959 || 1159 || 1283 || 1310 || 1405 || '''1443''' || 1470 || 1533 || |
Línea 188: | Línea 204: |
||||<rowstyle="font-weight: bold;"> Avg. || 959 || 1135 || 1223 || 1269 || 1405 || 1393 || 1453 || 1474 || | |||| Avg. || 959 || 1135 || 1223 || 1269 || 1405 || 1393 || 1453 || 1474 || |
Línea 193: | Línea 209: |
== 4 mayo 2012 == === Experimento 1 === Se prueba oscureciendo las imágenes de entrenamiento del clasificador. El oscurecimiento se realiza multiplicando las intensidades de los pixeles de las imágenes por un factor menor a 1. Se probo con factores de 0.33 y 0.5. En este experimento no se actualizó el modelo .gmm con los nuevos descriptores con flip y oscurecidos. ==== Configuración ==== * SGD LBD=1e-4, 20 iteraciones, 256 Gaussianas, DSIFT step=8, flip=1 * Using ''argmax'' for classification ==== Resultados ==== |||| NGAUSS=256 |||||| srange || || Tr. || Te. || 1.0 || 0.33 || 0.5 || || 1,2 || 3 || 199 || 229 || 221 || || 2,3 || 1 || 1949 || 1949 || 1945 || || 3,1 || 2 || 2182 || 2180 || 2180 || |||| Avg. || 1443 || 1452 || 1449 || == 5 mayo 2012 == === Experimento 1 === Se prueba oscureciendo las imágenes de entrenamiento del clasificador. El oscurecimiento se realiza multiplicando las intensidades de los pixeles de las imágenes por un factor menor a 1. Se probo con factores de 0.33 y 0.5. En este experimento si se actualizó el modelo .gmm con los nuevos descriptores generados con flip y con oscurecimiento. ==== Configuración ==== * SGD LBD=1e-4, 20 iteraciones, 256 Gaussianas, DSIFT step=8, flip=1 * Using ''argmax'' for classification ==== Resultados ==== |||| NGAUSS=256 |||||| srange || || Tr. || Te. || 1.0 || 0.33 || 0.5 || || 1,2 || 3 || 199 || 195 || 171 || || 2,3 || 1 || 1949 || 1945 || 1965 || || 3,1 || 2 || 2182 || 2166 || 2180 || |||| Avg. || 1443 || 1435 || 1439 || |
Robot Vision 2012
Experimentos realizados para la 4º edición de la competencia 'Robot Vision Challenge - ImageCLEF'.
Cosas que vamos a tener que probar
Aumentar los conjuntos de datos con la versión espejada de las imágenes
- Algún pre-procesamiento para estabilizar el "motion blur" y el "flickering"
- Debluring:
- Flickering: se puede probar trabajar en aglún espacio de color que sea robusto frente a cambios afines en la iluminación
- Descriptores de colores
J. van de Weijer, C. Schmid, J. Verbeek, D. Larlus, Learning Color Names for Real-World Applications, IEEE TIP, 2009.
http://lear.inrialpes.fr/people/vandeweijer/color_names.html
K. van de Sande, T. Gevers and C. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, IEEE TPAMI, 2010
Datasets
Imágenes de ejemplo
- En training1 el recorrido del robot es contrario al caso de training[23].
- Las imágenes de training3 son tomadas de noche
Training1
Training2
Training3
Repositorio con los scripts para replicar los experimentos
hg clone https://proyectos.ciii.frc.utn.edu.ar/hg/robot_vision_2012
Estructura de directorios
- RobotVision2012/DS_..._DSIFT_.../
trainingX/
trainingX.log
trainingX_lr/
trainingX_lr.log
_PCA_/
subspace.dat
subspace.log
80D/
trainingX/
trainingX.log
trainingX_lr/
trainingX_lr.log
_GMM_/
u64.gmm
u64/
IFV.../
trainingX/
trainingX.log
trainingX_lr/
trainingX_lr.log
_SGD_tr12_te3_/
hinge_20_1e-4/
Corridor.lin
hinge_20_1e-4.training3
hinge_20_1e-4.log
25 abril 2012
Experimento 1
Configuración
- Descriptores: SIFT sobre grilla regular (DSIFT de vlfeat), patchs 32x32, paso=8, L2-norm., D=128, 5 escalas, factor=0.707
- PCA: subespacio aprendido sobre training1+training2+training3, D=80
GMM: aprendido sobre training1+training2+training3, para N = 8, 16 y 32
- IFV: gradientes resp. medias y varianzas, alpha=0.5, pnorm=2.0
SGD: hinge loss, 20, 50 y 100 iteraciones, lambda = 1e-2, 1e-3 y 1e-4, training sobre training1 y testeando sobre training2. La clasificación se realizo con argmax.
Resultados
|
20 iteraciones |
50 iteraciones |
100 iteraciones |
||||||||
lambda\ngauss |
8 |
16 |
32 |
8 |
16 |
32 |
8 |
16 |
32 |
||
1e-3 |
1382 |
1334 |
1414 |
1376 |
1352 |
1426 |
1382 |
1356 |
1422 |
||
1e-4 |
1462 |
1422 |
1466 |
1462 |
1400 |
1478 |
1462 |
1396 |
1476 |
||
1e-5 |
1318 |
1402 |
1444 |
1358 |
1368 |
1394 |
1378 |
1384 |
1322 |
experimento_1_25_abril_2012.txt
26 abril 2012
Experimento 1
Configuración
- Igual que el experimento anterior, pero se agrego 64 gaussianas.
SGD: hinge loss, 20 iteraciones, lambda = 1e-4, training sobre training1 o training2 y testeando siempre sobre training3. La clasificación se realizo con argmax y con thr=-0.1.
Resultados
|
20 iteraciones, argmax, train1 |
20 iteraciones, thr=-0.1, train1 |
20 iteraciones, argmax, train2 |
20 iteraciones, thr=-0.1, train2 |
|||||||||||||||
l\ng |
8 |
16 |
32 |
64 |
8 |
16 |
32 |
64 |
8 |
16 |
32 |
64 |
8 |
16 |
32 |
64 |
|||
1e-4 |
-405 |
-153 |
-127 |
-161 |
194 |
362 |
355 |
399 |
-361 |
-87 |
1 |
35 |
226 |
421 |
471 |
553 |
experimento_1_train1_val3_argmax_26_abril_2012.txt experimento_1_train1_val3_-0.1_26_abril_2012.txt experimento_1_train2_val3_argmax_26_abril_2012.txt experimento_1_train2_val3_-0.1_26_abril_2012.txt
3 mayo 2012
Experimento 1
Se realiza una prueba con distintos valores de DSIFT_STEP (8 y 16) y aumento el conjunto de entrenamiento haciendo un flip left-right de las imágenes antes de calcular DSIFT. Flip=0, indica sin aumentar el conjunto; Flip=1 indica aumentando el conjunto de entrenamiento con las imágenes flipeadas. Al final de este experimento se muestra la configuración que resulta más apropiada.
Configuración
- SGD LBD=1e-4, 20 iteraciones
Using argmax for classification
Resultados
Flip=0
- DSIFT step=8
|
NGAUSS |
||||||||
Tr. |
Te. |
8 |
16 |
32 |
64 |
128 |
256 |
512 |
1024 |
1,2 |
3 |
-289 |
29 |
59 |
79 |
185 |
267 |
319 |
445 |
2,3 |
1 |
935 |
1195 |
1141 |
1173 |
1183 |
1251 |
1225 |
1293 |
3,1 |
2 |
1162 |
1374 |
1390 |
1456 |
1584 |
1658 |
1668 |
1632 |
Avg. |
603 |
866 |
863 |
903 |
984 |
1059 |
1071 |
1123 |
- DSIFT step=16
|
NGAUSS |
||||||||
Tr. |
Te. |
8 |
16 |
32 |
64 |
128 |
256 |
512 |
1024 |
1,2 |
3 |
-161 |
-9 |
19 |
25 |
225 |
191 |
299 |
371 |
2,3 |
1 |
897 |
1129 |
1221 |
1143 |
1101 |
1095 |
1175 |
1179 |
3,1 |
2 |
1160 |
1252 |
1392 |
1424 |
1412 |
1528 |
1552 |
1524 |
Avg. |
632 |
791 |
877 |
864 |
913 |
938 |
1009 |
1025 |
Flip=1
- DSIFT step=8
|
NGAUSS |
||||||||
Tr. |
Te. |
8 |
16 |
32 |
64 |
128 |
256 |
512 |
1024 |
1,2 |
3 |
-357 |
-105 |
45 |
59 |
185 |
199 |
233 |
411 |
2,3 |
1 |
1569 |
1703 |
1787 |
1795 |
1887 |
1949 |
1995 |
1999 |
3,1 |
2 |
1666 |
1880 |
2018 |
2076 |
2142 |
2182 |
2182 |
2190 |
Avg. |
959 |
1159 |
1283 |
1310 |
1405 |
1443 |
1470 |
1533 |
- DSIFT step=16
|
NGAUSS |
||||||||
Tr. |
Te. |
8 |
16 |
32 |
64 |
128 |
256 |
512 |
1024 |
1,2 |
3 |
-211 |
11 |
31 |
-15 |
233 |
149 |
263 |
373 |
2,3 |
1 |
1447 |
1651 |
1693 |
1791 |
1857 |
1901 |
1945 |
1909 |
3,1 |
2 |
1642 |
1744 |
1944 |
2032 |
2126 |
2128 |
2150 |
2140 |
Avg. |
959 |
1135 |
1223 |
1269 |
1405 |
1393 |
1453 |
1474 |
- Configuración: 256 Gaussianas, DSIFT step=8, flip=1
4 mayo 2012
Experimento 1
Se prueba oscureciendo las imágenes de entrenamiento del clasificador. El oscurecimiento se realiza multiplicando las intensidades de los pixeles de las imágenes por un factor menor a 1. Se probo con factores de 0.33 y 0.5. En este experimento no se actualizó el modelo .gmm con los nuevos descriptores con flip y oscurecidos.
Configuración
- SGD LBD=1e-4, 20 iteraciones, 256 Gaussianas, DSIFT step=8, flip=1
Using argmax for classification
Resultados
NGAUSS=256 |
srange |
|||
Tr. |
Te. |
1.0 |
0.33 |
0.5 |
1,2 |
3 |
199 |
229 |
221 |
2,3 |
1 |
1949 |
1949 |
1945 |
3,1 |
2 |
2182 |
2180 |
2180 |
Avg. |
1443 |
1452 |
1449 |
5 mayo 2012
Experimento 1
Se prueba oscureciendo las imágenes de entrenamiento del clasificador. El oscurecimiento se realiza multiplicando las intensidades de los pixeles de las imágenes por un factor menor a 1. Se probo con factores de 0.33 y 0.5. En este experimento si se actualizó el modelo .gmm con los nuevos descriptores generados con flip y con oscurecimiento.
Configuración
- SGD LBD=1e-4, 20 iteraciones, 256 Gaussianas, DSIFT step=8, flip=1
Using argmax for classification
Resultados
NGAUSS=256 |
srange |
|||
Tr. |
Te. |
1.0 |
0.33 |
0.5 |
1,2 |
3 |
199 |
195 |
171 |
2,3 |
1 |
1949 |
1945 |
1965 |
3,1 |
2 |
2182 |
2166 |
2180 |
Avg. |
1443 |
1435 |
1439 |