Bienvenido: Ingresar
location: Diferencias para "Vision/ProyectosVision/RobotVision2012"
Diferencias entre las revisiones 59 y 70 (abarca 11 versiones)
Versión 59 con fecha 2012-05-07 20:11:03
Tamaño: 11200
Editor: Jaarac
Comentario:
Versión 70 con fecha 2012-05-11 19:47:06
Tamaño: 16564
Editor: Jaarac
Comentario:
Los textos eliminados se marcan así. Los textos añadidos se marcan así.
Línea 4: Línea 4:
Línea 7: Línea 8:

== Tareas ==
 * --(experimentos con pirámides espaciales)--
 * usar el detector de transiciones con NGAUSS=64, 128 y 256
 * buscar implementaciones y evaluar descriptores RGBD
 * ver algunos descriptores de colores
Línea 245: Línea 253:

== 7 mayo 2012 ==
=== Experimento 1 ===
Se prueba utilizando feature augmentation. En este experimento si se actualizó el modelo .gmm con los descriptores generados con flip de las imágenes.
Con aug=1 o aug=0 se indica el uso o no de feature augmentation respectivamente.
==== Configuración ====

 * SGD LBD=1e-4, 20 iteraciones, 64 Gaussianas, DSIFT step=8, flip=[0,1]

 * Using ''argmax'' for classification

==== Resultados ====

|||| NGAUSS=64 |||| flip=0 |||| flip=1 ||
|| Tr. || Te. || aug=0|| aug=1 || aug=0|| aug=1 ||
|| 1,2 || 3 || 77 || 87 || 257 || 33 ||
|| 2,3 || 1 || 1173 || 1207 || 1801 || 1783 ||
|| 3,1 || 2 || 1440 || 1528 || 2080 || 2014 ||
|||| Avg. || 897 || 941 || 1379 || 1277 ||

 * Comparación usando en ambos casos imágenes de entrenamiento originales y flipeadas, pero en el primer caso entrenando el modelo .gmm solo en las imágenes originales (gmm_flip=0) y en el segundo caso utilizando las imágenes originales y las flipeadas (gmm_flip=1). No se usó feature augmentation.

|||| NGAUSS=64 |||| flip=1 ||
|| Tr. || Te. || gmm_flip=0 || gmm_flip=1 ||
|| 1,2 || 3 || 59 || 257 ||
|| 2,3 || 1 || 1795 || 1801 ||
|| 3,1 || 2 || 2076 || 2080 ||
|||| Avg. || 1310 || 1379 ||

== 8 mayo 2012 ==
=== Experimento 1 ===
Se prueba utilizando feature augmentation. En este experimento si se actualizó el modelo .gmm con los descriptores generados con flip de las imágenes.
Con aug=1 o aug=0 se indica el uso o no de feature augmentation respectivamente.
==== Configuración ====

 * SGD LBD=1e-4, 20 iteraciones, 128 Gaussianas, DSIFT step=8, flip=[0,1]

 * Using ''argmax'' for classification

==== Resultados ====

|||| NGAUSS=128 |||| flip=0 |||| flip=1 ||
|| Tr. || Te. || aug=0 || aug=1 || aug=0|| aug=1 ||
|| 1,2 || 3 || 191 || 115 || 195 || 39 ||
|| 2,3 || 1 || 1189 || 1255 || 1887 || 1905 ||
|| 3,1 || 2 || 1582 || 1618 || 2132 || 2098 ||
|||| Avg. || 987 || 996 || 1405 || 1347 ||

== 9 mayo 2012 ==
=== Experimento 1 ===
Se prueba utilizando pirámides espaciales. Las configuraciones usadas son "sp1x1,lsf=0,gsf=0" (spyr=0), "sp1x1,sp1x3,lsf=0,gsf=0" (spyr=1) y "sp1x1,sp1x3,lsf=0.33,gsf=0.33" (spyr=2).
==== Configuración ====

 * SGD LBD=1e-4, 20 iteraciones, 64 Gaussianas, DSIFT step=8, flip=[0,1]

 * Using ''argmax'' for classification

==== Resultados ====

|||| NGAUSS=64 |||||| flip=0 |||||| flip=1 ||
|| Tr. || Te. || spyr=0 || spyr=1 || spyr=2 || spyr=0 || spyr=1 || spyr=2||
|| 1,2 || 3 || 77 || -413 || -41 || 257 || -458 || 201 ||
|| 2,3 || 1 || 1173 || 1123 || 1029 || 1801 || 1773 || 1791 ||
|| 3,1 || 2 || 1440 || 1412 || 1358 || 2080 || 2078 || 2084 ||
|||| Avg. || 897 || 707 || 782 || 1379 || 1122 || 1359 ||

== 11 mayo 2012 ==
=== Experimento 1 ===
Se prueba utilizando opponent SIFT. El software utilizado para calcular los descriptores es [[http://koen.me/research/colordescriptors|colorDescriptor]]. Estos cálculos se realizaron sobre la notebook de jaarac, por eso pueden variar con los que se calcularon antes.
==== Configuración ====
 * Descriptor: OPP_SIFT, step=16, sampling_scale=1.6

 * SGD LBD=1e-4; 20 iteraciones; 16, 32 y 64 Gaussianas; flip=0

 * Using ''argmax'' for classification

==== Resultados ====

|||| OPPSIFT |||||| flip=0 ||
|| Tr. || Te. || 16 || 32 || 64 ||
|| 1,2 || 3 || -231 || -173 || -17 ||
|| 2,3 || 1 || 1161 || 1217 || 1221 ||
|| 3,1 || 2 || 1538 || 1598 || 1664 ||
|||| Avg. || 823 || 881 || 956 ||

=== Experimento 2 ===
Se evaluó el detector de transiciones y distintas formas de realizar la clasificación. Con el detector de transiciones no se obtuvieron mejoras, así que los datos no fueron subidos.
==== Configuración ====
 * Los resultados mostrados son promedios sobre los scores obtenidos para las 3 configuraciones de conjuntos posibles para valores de 64, 128 y 256 gaussianas.

==== Resultados ====
 * Aplicando un umbral a la diferencia entre el mayor y el segundo mayor score para decidir si clasificamos o no. La clasificación posterior se realizó con argmax. Solamente se muestran umbrales hasta 0.9, porque para umbrales menores los scores son muy bajos. El umbral 0.0 sería el baseline, o sea siempre clasificamos.

||umbral||0.0 ||0.1 ||0.2 ||0.3 ||0.4 ||0.5 ||0.6 ||0.7 ||0.8 ||0.9 ||
||avg ||979.556||1035.44||1072||1095.78||'''1103.44'''||1102.67||1088.56||1058.56||1021.11||972.111||

 * Utilizando un umbral sobre el mayor score de clasificación, para decidir cuando clasificar. Luego se elige la clase del mayor score.

||umbral||-1.0 ||-0.9 ||-0.8 ||-0.7 ||-0.6 ||-0.5 ||-0.4 ||-0.3 ||-0.2 ||-0.1 ||0.0 ||0.1 ||0.2 ||
||avg ||980.444||983.778||996.667||1019.56||1051.67||1095.89||1136.56||1172.44||'''1185'''||1166.78||1120.44||1056.67||979.444||

Robot Vision 2012

Experimentos realizados para la 4º edición de la competencia 'Robot Vision Challenge - ImageCLEF'.

Robot Vision 2012 Web Site

Tareas

  • experimentos con pirámides espaciales

  • usar el detector de transiciones con NGAUSS=64, 128 y 256
  • buscar implementaciones y evaluar descriptores RGBD
  • ver algunos descriptores de colores

Cosas que vamos a tener que probar

Datasets

Imágenes de ejemplo

  • En training1 el recorrido del robot es contrario al caso de training[23].
  • Las imágenes de training3 son tomadas de noche

Training1

rgb_69 rgb_71 rgb_73 rgb_75

Training2

rgb_93 rgb_95 rgb_97 rgb_99

Training3

rgb_60 rgb_62 rgb_64 rgb_66

Repositorio con los scripts para replicar los experimentos

hg clone https://proyectos.ciii.frc.utn.edu.ar/hg/robot_vision_2012

Estructura de directorios

  • RobotVision2012/DS_..._DSIFT_.../
    • trainingX/

      trainingX.log

      trainingX_lr/

      trainingX_lr.log

      _PCA_/

      • subspace.dat

        subspace.log

        80D/

        • trainingX/

          trainingX.log

          trainingX_lr/

          trainingX_lr.log

          _GMM_/

          • u64.gmm

            u64/

            • IFV.../

              • trainingX/

                trainingX.log

                trainingX_lr/

                trainingX_lr.log

                _SGD_tr12_te3_/

                • hinge_20_1e-4/

                  • Corridor.lin

                  hinge_20_1e-4.training3

                  hinge_20_1e-4.log

25 abril 2012

Experimento 1

Configuración

  • Descriptores: SIFT sobre grilla regular (DSIFT de vlfeat), patchs 32x32, paso=8, L2-norm., D=128, 5 escalas, factor=0.707
  • PCA: subespacio aprendido sobre training1+training2+training3, D=80
  • GMM: aprendido sobre training1+training2+training3, para N = 8, 16 y 32

  • IFV: gradientes resp. medias y varianzas, alpha=0.5, pnorm=2.0
  • SGD: hinge loss, 20, 50 y 100 iteraciones, lambda = 1e-2, 1e-3 y 1e-4, training sobre training1 y testeando sobre training2. La clasificación se realizo con argmax.

Resultados

20 iteraciones

50 iteraciones

100 iteraciones

lambda\ngauss

8

16

32

8

16

32

8

16

32

1e-3

1382

1334

1414

1376

1352

1426

1382

1356

1422

1e-4

1462

1422

1466

1462

1400

1478

1462

1396

1476

1e-5

1318

1402

1444

1358

1368

1394

1378

1384

1322

experimento_1_25_abril_2012.txt

26 abril 2012

Experimento 1

Configuración

  • Igual que el experimento anterior, pero se agrego 64 gaussianas.
  • SGD: hinge loss, 20 iteraciones, lambda = 1e-4, training sobre training1 o training2 y testeando siempre sobre training3. La clasificación se realizo con argmax y con thr=-0.1.

Resultados

20 iteraciones, argmax, train1

20 iteraciones, thr=-0.1, train1

20 iteraciones, argmax, train2

20 iteraciones, thr=-0.1, train2

l\ng

8

16

32

64

8

16

32

64

8

16

32

64

8

16

32

64

1e-4

-405

-153

-127

-161

194

362

355

399

-361

-87

1

35

226

421

471

553

experimento_1_train1_val3_argmax_26_abril_2012.txt experimento_1_train1_val3_-0.1_26_abril_2012.txt experimento_1_train2_val3_argmax_26_abril_2012.txt experimento_1_train2_val3_-0.1_26_abril_2012.txt

3 mayo 2012

Experimento 1

Se realiza una prueba con distintos valores de DSIFT_STEP (8 y 16) y aumento el conjunto de entrenamiento haciendo un flip left-right de las imágenes antes de calcular DSIFT. Flip=0, indica sin aumentar el conjunto; Flip=1 indica aumentando el conjunto de entrenamiento con las imágenes flipeadas. Al final de este experimento se muestra la configuración que resulta más apropiada.

Configuración

  • SGD LBD=1e-4, 20 iteraciones
  • Using argmax for classification

Resultados

Flip=0
  • DSIFT step=8

NGAUSS

Tr.

Te.

8

16

32

64

128

256

512

1024

1,2

3

-289

29

59

79

185

267

319

445

2,3

1

935

1195

1141

1173

1183

1251

1225

1293

3,1

2

1162

1374

1390

1456

1584

1658

1668

1632

Avg.

603

866

863

903

984

1059

1071

1123

  • DSIFT step=16

NGAUSS

Tr.

Te.

8

16

32

64

128

256

512

1024

1,2

3

-161

-9

19

25

225

191

299

371

2,3

1

897

1129

1221

1143

1101

1095

1175

1179

3,1

2

1160

1252

1392

1424

1412

1528

1552

1524

Avg.

632

791

877

864

913

938

1009

1025

Flip=1
  • DSIFT step=8

NGAUSS

Tr.

Te.

8

16

32

64

128

256

512

1024

1,2

3

-357

-105

45

59

185

199

233

411

2,3

1

1569

1703

1787

1795

1887

1949

1995

1999

3,1

2

1666

1880

2018

2076

2142

2182

2182

2190

Avg.

959

1159

1283

1310

1405

1443

1470

1533

  • DSIFT step=16

NGAUSS

Tr.

Te.

8

16

32

64

128

256

512

1024

1,2

3

-211

11

31

-15

233

149

263

373

2,3

1

1447

1651

1693

1791

1857

1901

1945

1909

3,1

2

1642

1744

1944

2032

2126

2128

2150

2140

Avg.

959

1135

1223

1269

1405

1393

1453

1474

results_3_de_mayo_2012.tar.gz

  • Configuración: 256 Gaussianas, DSIFT step=8, flip=1

4 mayo 2012

Experimento 1

Se prueba oscureciendo las imágenes de entrenamiento del clasificador. El oscurecimiento se realiza multiplicando las intensidades de los pixeles de las imágenes por un factor menor a 1. Se probo con factores de 0.33 y 0.5. En este experimento no se actualizó el modelo .gmm con los nuevos descriptores con flip y oscurecidos.

Configuración

  • SGD LBD=1e-4, 20 iteraciones, 256 Gaussianas, DSIFT step=8, flip=1
  • Using argmax for classification

Resultados

NGAUSS=256

srange

Tr.

Te.

1.0

0.33

0.5

1,2

3

199

229

221

2,3

1

1949

1949

1945

3,1

2

2182

2180

2180

Avg.

1443

1452

1449

5 mayo 2012

Experimento 1

Se prueba oscureciendo las imágenes de entrenamiento del clasificador. El oscurecimiento se realiza multiplicando las intensidades de los pixeles de las imágenes por un factor menor a 1. Se probo con factores de 0.33 y 0.5. En este experimento si se actualizó el modelo .gmm con los nuevos descriptores generados con flip y con oscurecimiento.

Configuración

  • SGD LBD=1e-4, 20 iteraciones, 256 Gaussianas, DSIFT step=8, flip=1
  • Using argmax for classification

Resultados

NGAUSS=256

srange

Tr.

Te.

1.0

0.1

0.33

0.5

1,2

3

199

187

195

171

2,3

1

1949

1975

1945

1965

3,1

2

2182

2154

2166

2180

Avg.

1443

1439

1435

1439

7 mayo 2012

Experimento 1

Se prueba utilizando feature augmentation. En este experimento si se actualizó el modelo .gmm con los descriptores generados con flip de las imágenes. Con aug=1 o aug=0 se indica el uso o no de feature augmentation respectivamente.

Configuración

  • SGD LBD=1e-4, 20 iteraciones, 64 Gaussianas, DSIFT step=8, flip=[0,1]
  • Using argmax for classification

Resultados

NGAUSS=64

flip=0

flip=1

Tr.

Te.

aug=0

aug=1

aug=0

aug=1

1,2

3

77

87

257

33

2,3

1

1173

1207

1801

1783

3,1

2

1440

1528

2080

2014

Avg.

897

941

1379

1277

  • Comparación usando en ambos casos imágenes de entrenamiento originales y flipeadas, pero en el primer caso entrenando el modelo .gmm solo en las imágenes originales (gmm_flip=0) y en el segundo caso utilizando las imágenes originales y las flipeadas (gmm_flip=1). No se usó feature augmentation.

NGAUSS=64

flip=1

Tr.

Te.

gmm_flip=0

gmm_flip=1

1,2

3

59

257

2,3

1

1795

1801

3,1

2

2076

2080

Avg.

1310

1379

8 mayo 2012

Experimento 1

Se prueba utilizando feature augmentation. En este experimento si se actualizó el modelo .gmm con los descriptores generados con flip de las imágenes. Con aug=1 o aug=0 se indica el uso o no de feature augmentation respectivamente.

Configuración

  • SGD LBD=1e-4, 20 iteraciones, 128 Gaussianas, DSIFT step=8, flip=[0,1]
  • Using argmax for classification

Resultados

NGAUSS=128

flip=0

flip=1

Tr.

Te.

aug=0

aug=1

aug=0

aug=1

1,2

3

191

115

195

39

2,3

1

1189

1255

1887

1905

3,1

2

1582

1618

2132

2098

Avg.

987

996

1405

1347

9 mayo 2012

Experimento 1

Se prueba utilizando pirámides espaciales. Las configuraciones usadas son "sp1x1,lsf=0,gsf=0" (spyr=0), "sp1x1,sp1x3,lsf=0,gsf=0" (spyr=1) y "sp1x1,sp1x3,lsf=0.33,gsf=0.33" (spyr=2).

Configuración

  • SGD LBD=1e-4, 20 iteraciones, 64 Gaussianas, DSIFT step=8, flip=[0,1]
  • Using argmax for classification

Resultados

NGAUSS=64

flip=0

flip=1

Tr.

Te.

spyr=0

spyr=1

spyr=2

spyr=0

spyr=1

spyr=2

1,2

3

77

-413

-41

257

-458

201

2,3

1

1173

1123

1029

1801

1773

1791

3,1

2

1440

1412

1358

2080

2078

2084

Avg.

897

707

782

1379

1122

1359

11 mayo 2012

Experimento 1

Se prueba utilizando opponent SIFT. El software utilizado para calcular los descriptores es colorDescriptor. Estos cálculos se realizaron sobre la notebook de jaarac, por eso pueden variar con los que se calcularon antes.

Configuración

  • Descriptor: OPP_SIFT, step=16, sampling_scale=1.6
  • SGD LBD=1e-4; 20 iteraciones; 16, 32 y 64 Gaussianas; flip=0
  • Using argmax for classification

Resultados

OPPSIFT

flip=0

Tr.

Te.

16

32

64

1,2

3

-231

-173

-17

2,3

1

1161

1217

1221

3,1

2

1538

1598

1664

Avg.

823

881

956

Experimento 2

Se evaluó el detector de transiciones y distintas formas de realizar la clasificación. Con el detector de transiciones no se obtuvieron mejoras, así que los datos no fueron subidos.

Configuración

  • Los resultados mostrados son promedios sobre los scores obtenidos para las 3 configuraciones de conjuntos posibles para valores de 64, 128 y 256 gaussianas.

Resultados

  • Aplicando un umbral a la diferencia entre el mayor y el segundo mayor score para decidir si clasificamos o no. La clasificación posterior se realizó con argmax. Solamente se muestran umbrales hasta 0.9, porque para umbrales menores los scores son muy bajos. El umbral 0.0 sería el baseline, o sea siempre clasificamos.

umbral

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

avg

979.556

1035.44

1072

1095.78

1103.44

1102.67

1088.56

1058.56

1021.11

972.111

  • Utilizando un umbral sobre el mayor score de clasificación, para decidir cuando clasificar. Luego se elige la clase del mayor score.

umbral

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

avg

980.444

983.778

996.667

1019.56

1051.67

1095.89

1136.56

1172.44

1185

1166.78

1120.44

1056.67

979.444

None: Vision/ProyectosVision/RobotVision2012 (última edición 2013-08-10 22:52:45 efectuada por Jaarac)