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Abstract

This work is a part of the RoMAA (Robot Móvil de Arquitectura Abierta) project of the
center of investigation of the Universidad Tecnologica Nacional in Córdoba Argentina.
It treats the aim to estimate the odometry, the covered distance, of the mobile robot.
For that it is elementary to know its position and orientation. This problem is been
solved by means of vision based pose estimation. Therefore the robot is equipped with a
digital camera which is used to detect arti�cial landmarks. The passive beacons have a
quadratic form and a black and white chess-board pattern which make it easy to detect
the needed referce points. The motivation of this work is to estimate the robots pose
without knowing the environment nor having a global reference frame. There is also no
restriction of the placement of the landmarks in the area. The robot shall be able to
calculate his position by using the information recieved from the arbitrarily distributed
landmarks. Beause of that there are presented two algorithms in order to achieve the
estimation of the robot pose. One is used to calculate the pose and the other solves
the problem of the so called pose ambiguity which can ocurre using planar targets like
landmarks. In case of detecting two landmarks in one image the delivered informations
are fused with the help of a kalman �lter. This theoretical part is implemented in Octave,
the Open Source alternative to Matlab for GNU/Linux based computers. At the end of
the work simulation results of the deverse settings are demonstrated.
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Chapter 1

Introduction

Since long time man tried to create machines to help him with his necessity. In the
last decades with growing scienti�c knowledge this could be realized in more and more
�elds of the daily life. Not only that in mechanical construction where industrial robots
already do a great part of former manual work. But also in military a space craft the
robots are used in situations too dangerous for humans or simply unreachable. Another
goal of robotics is to make the robot act and look like every time more similar to man. So
there are sport challanges of robots yet. For all these achievements and for those which
still will come the knowledge of the robots position and orientation is a main problem
to solve. To get the robots pose in an often unknown surrounding area, instruments are
needed to give information about the surrounding to diverse algorithms which make the
calculation for the pose estimation. There are a lot of such sensors to provide the data,
for example GPS, ultra sound, cameras, magnetical, rotation sensors and more. Here
the mobile robot is equipped just with one �xed camera to detect the environment. The
aim is to detect so called landmarks with a chess board pattern which are put arbitrarily
in the ambience of the robot. With the aid of these landmarks their relative position to
the robot can be estimated. In this way the desired covered distance, the odometry, of
the robot can be calculated.
This work is structured as follows. In the second chapter there are given some infor-
mation about the project of the research group CIII of the Universidad Tecnólogica
Nacional in Córdoba Argentina. The robot and the environment are shown. After that
in the third chapter the algorithms to estimate the pose of the robot to the landmark
are presented. It is divided in two parts. The �rst is just about the pose estimation and
the second about possible pose ambiguity. Then in chapter four a method to fuse the
information of various sensors is explained, the Kalman �lter. And at the end of this
work the simulation results are illustrated.
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Chapter 2

System presentation

Figure 2.1: romaa

In this chapter an understanding of the setting of this work is given. At �rst the used
robot as mobil vehicle is described shortly, for more information see [9]. And after
that the structure of the environment in which the robot moves and the shape of the
landmarks which are to be detected are shown.
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Chapter 2 System presentation

2.1 Robot

Figure 2.2: con�guration of the romaa robot

The mechanical base of this work builds the mobile robot unit "RoMAA" (Robot Móvil
de Arquitectura Abierta) of the Center of Investigation in Informatics for Engineering
(Centro de Investigación en Informática para la Ingeniería, CIII) of the Universidad
Tecnológica Nacional, Facultad Regional Córdoba in Argentina. The RoMAA was con-
structed to be able to implement diverse experiments in the working �elds of computer
vision, control and robotics. Further it shall provide a platform for an open source
arquitechture. The mecanical design guarantees easy access to the components and suf-
�cient space for sensors and actors in the front part. In terms of the computational
section of the robot there can be used on-board pc or an wireless environment. The
mecanical and electrical data can be read out from the tables 2.1 to 2.3.
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2.1 Robot

Dimensions 570 mm length
570 mm width
200 mm height

Materials aluminium 2024
Weight approx. 52 kg

Carga util 48 kg
Diameter of the wheels 147 mm

Wheelbase 503 mm
Turning radius 0 mm

RA 407 mm

Table 2.1: mecanical caracteristics

Nominal tension of the motor 24 V
Maximal power of the motor 144 W (each)

Rpm of the motor 5000
Reduction 17,72:1

Maximal rpm of the axis of the motor 282,17
Maximum speed 2,22 m

s

Maximal acceleration 0,2 m
s2

Distance resolution 0,5 mm

Table 2.2: engine carateristics

Nominal tension 12 V
Nominal capacitance @25◦C, Iconst = 3A 24 A-h

Dimension 175 mm length
166 mm width
126 mm height

Weight approx. 8.9 kg

Table 2.3: battery carateristics
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Chapter 2 System presentation

2.2 Environment

The environment of the project is given by a planar indoor area of rectangular shape.
In this area the robot shall be able to move freely without obstacles, at �rst, that would
be part of the next step. So far the robot is driven by a remote control because the
objective is just to get the right position of it.

Figure 2.3: pattern of the landmark

To orientate itself the robot detects beacons which are passive landmarks like shown in
�gure 2.3 by means of the camera. Passive means in this case that they don't emit any
signals. To put not too much restriction to the choice of the environment the landmarks
are attached arbitrarily at the walls limiting the scene, but preferably at the hight of
the camera. The only thing is that the robot and the camera, respectively, should be
able to detect always at least one landmark. The setting of the system is exempli�ed
for two landmarks in �gure 2.4. In this �gure the indices l1, l2 and c represent the �rst
landmark, the second landmark and the camera. t is the respective translation vector
in the xz plane and ϕ the rotation angel of the coordinate systems with respect to the
camera frame.
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2.2 Environment

phi_l1 phi_l2

z_c

z_l2z_l1
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Figure 2.4: con�guration of the environment
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Chapter 3

Pose Estimation from video images

In times of unmanned navigation of vehicles and the increasing research in the �eld
of mobile robots the estimation of the position and the orientation, just called pose
estimation, of such a robot is a fundamental problem to be solved concerning other
tasks as moving or object's tracking. Often this has to be done in real time depending
the requirements of the system. To realize this challenge there are a couple of theoretical
techniques available. The easiest way to estimate the pose is by means of odometry [22].
But for larger distances it results a grand error which can be improved combinating
it with other sensors like in [7]. If besides the robots pose a map of the environment
shall be created the socalled simultaneous localization and map building (SLAM) [17]
and [1] can be applied. Another way is to use stationary active beacons, [13] and [15],
emitting signals which are detected by a receiver on the robot. In this work the aim
is to calculate the pose of a robot with an on-board camera on the basis of stationary
landmarks shown in �gure 2.3. Therefore the theory in [23] and [4] is used to develop
an appropriate algorithm.
The chapter is organized as follows. In section 3.1 the algorithm for estimating the pose
is presented. It is devided into 3.1.1 to 3.1.3 to demonstrate some mathematical tools
and the geometrical conditions before starting with the derivation of the algorithm in
3.1.4. In the second part of this chapter another algorithm is proposed. Since there is
ambiguity concerning the pose, means that there are more than one local minima of the
error function, this algorithm chooses the one with the lowest error. Like in the section
before, after showing the geometry in 3.2.1 the derivation of the algorithm is explained.
In the following the expressions ˆ(..) represent the measured and therefore not noise free
values.
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Chapter 3 Pose Estimation from video images

3.1 Pose estimation

In this section the derivation of the algorithm to estimate the pose of a robot is the main
topic. This is done by using at least four points of the landmark shown in �gure 2.3.
With these and the corresponding points detected in the image the algorithm operates
to calculate the pose of the robot. But before, some other items have to be discussed
which are needed to explicate the algorithm. At �rst a short explanation about the so
called absolute orientation problem is given followed by the orthogonal projection. After
that the geometrical conditions in which the system is resided. At the end of this section
and past the explained terms the algorithm is presented.
In terms of notation it is said that in the following the expressions A and a describe
matrices and vectors, respectively, without noise, whereas the expressions Â and â are
the observed or measured matrices and vectors.

3.1.1 Absolut Orientation Problem

The absolute orientation problem is the process of estimating the rotation and translation
between two di�erent coordinate systems given by the matrix R and the vector t. The
estimation is based on the corresponding pairs of the camera space coordinates q and
the object space coordinates p. It is supposed that p is known and q can be read out
from the captured image. Another way to calculate the camera space coordinates is to
use the relation between the systems given by

q = Rp+ t. (3.1)

With the goal obtaining R and t there can be further the least-squares problem pro-
posed

min
R,t

n∑
i=1

‖Rpi + t− qi‖2 (3.2)

where the minimization of the error with respect to R and t between the two obtained
manners of determining q must be estimated. To solve the least-squares problem in
a closed form there are various ways for example by using quaternions like in [12] or
using the sigular value decomposition presented in [2] and [14]. In this work the sigular
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3.1 Pose estimation

value decomposition is used. In the following a short explaination of the solution of
the absolute orientation problem is given. The equation 3.1 is supposed as the relation
between pi and qi and the center of mass of the set of points is calculated to

p̄ =
1

n

n∑
i=1

pi (3.3)

q̄ =
1

n

n∑
i=1

qi. (3.4)

Further are de�ned

p′i = pi − p̄, q′i = qi − q̄ (3.5)

as the distance of the particular points to the de�ned center and the matrix

M =
n∑
i=1

q′ip
′t
i (3.6)

which coincide with the sample cross-covariance matrix when multiplied by 1
n
. [2] shows

that with the given conditions R∗ and t∗ minimize equation 3.2 and can be estimated
like

R∗ = arg max
R

tr(RtM) (3.7)

t∗ = q̄ −R∗p̄. (3.8)

Suppose the matrices U , Σ and V are the singular value decomposition of M , which
means that acording to the theory in [2] they satisfy

U tMV = Σ (3.9)

where the columns of V represtent the eigenvectors of M∗M , the ones of U the eigen-
vectors of MM∗ and the diagonal values of Σ the square roots of the eigenvalues that
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Chapter 3 Pose Estimation from video images

correspond with the same columns in U and V . With 3.9 it can be estimated a rotation
matrix

R∗ = V U t (3.10)

which coincides whith R∗ calculated in equation 3.7. So �nally the searched rotation
matrix which minimizes equation 3.2 can be obtained. Further the corresponding trans-
lation can be calculated according to equation 3.8.

3.1.2 Orthogonal Projection

Uy

x

Figure 3.1: general orthogonal projection

The orthogonal projection describes a linear projection of a three dimensional vector
upon a two dimensional subspace U where the view direction is orthogonal to the pro-
jection plane as shown in �gure 3.1. The output vector of the projection is calculated
according to

y = Pvx =

j∑
k=1

v′kx

v′kvk
vk =

j∑
k=1

vk
v′kx

v′kvk
(3.11)
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3.1 Pose estimation

The equal sign holds because of the linearity. The important step to get the projection
matrix is to rewrite equation 3.11 as

y = Pv(x) =

j∑
k=1

vkv
′
k

v′kvk
x (3.12)

with the orthogonal projection matrix

Vi =
viv

t
i

vtivi
. (3.13)

x

y
v

Figure 3.2: orthogonal projection upon a vector

where v1,..,vj is the orthogonal base of U . Generally speaking this means that the result
of the projection is a vector composed of multiples of the subspace base vectors. Since
here the subspace is a vector the result is just a multiple of v which is demonstrated in
�gure 3.2. The orthogonal projection has two extremal results, the zero vector if x and
v are perpendicular and x itself if they point in the same direction.

3.1.3 Geometrical conditions

In order that the information provided by an image of a camera can be processed ac-
cording to estimate the pose with respect to an object the geometrical conditions are to
be clari�ed. This means that the relation between the camera and the object and its
coordinate systems respectively. Figure 3.3 shows how the con�guration in this work is
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Chapter 3 Pose Estimation from video images

normalized
image
plane

object
reference
frame

camera
reference
frame

R,t

X

Y

Z

X'

Y'

Z'

(x,y,z)

(u_1,u_2)

(x',y',z')

Figure 3.3: relation between camera and landmark

set. At this p =

xy
z

 speci�es the three dimensional coordinate system of the landmark

like it is brought out in �gure 3.3, q =

x′y′
z′

 the one of the camera and v =

u1

u2

1


the two dimensional coordinate system of the so called normalized image plane. That
describes the plane in the camera coordinate system with z′ = 1. Hence the connection
of p and q results in

q = Rp+ t (3.14)

whith the rotation matrix R and the translation vector t. Further the relation of q and
v adds up to the projection equation acording to the pin-hole theory
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3.1 Pose estimation

v =

x′

z′
fx + cx

y′

z′
fy + cy

1

 (3.15)

with the vector of the focal length

f =

(
fx
fy

)
(3.16)

and the vector

c =

(
cx
cy

)
(3.17)

describing the optical center of the camera. Since the relation of the coordinate systems
is linear vi, qi and the optical center of the camera are collinear, shown in �gure 3.3.
Thus it can be proposed that the orthogonal projection of qi on vi should be qi itself
which can be expressed by the so called object space collinearity equation

Rpi + t = Vi (Rpi + t) (3.18)

with

Vi =
viv

t
i

vtivi
(3.19)

as the orthogonal projection matrix according to equation 3.13. Now all the information
of the observed points vi are stored in the matrices Vi. Due to measuring errors the
collinearity is not given exactly and therefore equation 3.18 is not satis�ed. Figuratively
speaking, this means that the vectores qi and vi do not point exactly in the same direc-
tion. This error between the orthogonal projection Pvi

(qi) and qi itself is called object
space error

ei = (I − V̂i)(Rpi + t) (3.20)
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Chapter 3 Pose Estimation from video images

X

Y

Z

X'

Y'

Z'

(x,y,z)

(u,v)
image space error

object space
error

Figure 3.4: objectspace and image-space collinearity error

and is displayed in �gure 3.4, where V̂i is the observed orthogonal projection matrix
which is de�ned in equation 3.19, R is the rotation matrix, t the translation vector and
pi are the points which represent the landmark. Taking the sum of the squared errors of
all n pairs of points pi and qi the aim of the algorithm explained in the following section
can be proposed to �nd a rigid transformation (R, t) to minimize the summation of the
squared errors.

3.1.4 Algorithm

To begin with the derivation of the algorithm estimating the pose the object-space
collinearity error from equation 3.20, which is explained in the recent section, is taken
as the starting point. As explained in section 3.1.1, satisfying the conditions it is easy
to �nd a solution for the absolute orientation problem as well as for the problem of
estimation the pose of the robot. So starting with the error equation 3.14 the �rst step
is to convert this error equation into a least square problem to be able to apply the SVD
theory shown in 3.1.1. This is done by regarding the sum of the squared error

18



3.1 Pose estimation

E(R, t) =
n∑
i=1

‖ei‖2 =
n∑
i=1

∥∥∥(I − V̂i)(Rpi + t)
∥∥∥2

(3.21)

with respect to the matrix R and the vector t. Now it is possible to obtain the pose by
minimizing equation 3.21. With a �xed rotation R there can be calculated the optimal
translation t like

t(R) =
1

n

(
I − 1

n

∑
j

V̂j

)−1∑
j

(
V̂j − I

)
Rpj (3.22)

so that in the following it is tried to �nd the minimization of equation 3.21 only with
respect to the rotation R. Further it is attemped to convert equation 3.21 to an absolute
orientation problem according to equation 3.2. In the �rst step the de�nitions

qi(R) = V̂i (Rpi + t(R)) (3.23)

q̄(R) =
1

n

n∑
i=1

qi(R), (3.24)

where q̄(R) represents the center of mass of the set of camera frame points, are made in
order to rewrite equation 3.21 to

E(R) =
n∑
i=1

‖Rpi + t(R)− qi(R)‖2 . (3.25)

Like this the equation 3.25 seems the same like equation 3.2 but still it isn't. That
becomes apparent if the sample cross-covariance matrix

M(R) =
n∑
i=1

q′i(R)p′ti (3.26)

with
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Chapter 3 Pose Estimation from video images

p′i = pi − p̄ (3.27)

q′i(R) = qi(R)− q̄(R) (3.28)

is considered. It can be seen that M still depends on the rotation matrix R so that the
SVD theory can not be applied and equation 3.25 can not be solved for R in a closed
form. Another way to estimate R which minimize the error function is to calculate it
iteratively. In the kth step of the iteration the following equations are given

t(k) = t(R(k)) (3.29)

q
(k)
i = R(k)pi + t(k). (3.30)

The rotation in the next iteration step is evaluated like

R(k+1) = arg min
R

n∑
i=1

∥∥∥Rpi + t− V̂iq(k)
i

∥∥∥2

(3.31)

= arg max tr
(
RtM(R(k))

)
(3.32)

where t(k) is not dependent of the actual rotation matrix R(k+1) but was calculated in
the step before. So both q

(k)
i and M (k) are independent of the actual rotation matrix

R(k+1). Therefor in each iteration step the equations 3.31 and 3.32 respectively, can be
considered as an absolute orientation problem and can be solved like shown in section
3.1.1. V̂iq

(k)
i in equation 3.31 is regarded as a hypothesis of the set of scene points qi

in equation 3.2. Having found R(k+1) which minimizes equation 3.31 the new optimal
translation vector can be updated to

t(k+1) = t
(
R(k+1)

)
(3.33)

according to equation 3.22 and a new iteration step can be started. A �nal solution R∗

is found if it represents a �xed point of equation 3.31 which means that the values of R
don't change and
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3.2 Pose ambiguity

R(j) = R(j+1) (3.34)

is satis�ed. The abort criterion can also displayed as

R∗ = arg min
R

n∑
i=1

∥∥∥Rpi + t− V̂i(R∗pi + t(R∗))
∥∥∥2

. (3.35)

3.2 Pose ambiguity

In this part of the work the problem of the pose ambiguity is discussed which can
occure in the estimation of the robot pose according to two dimensional landmarks. The
vision-based pose estimation is not very precise so that jitter, pose jumps and gross
pose outliers can occure. Due to this uncertainty the corresponding error function of the
algorithms may deliver two distinct local minima. And for that in many cases a wrong
pose is estimated. The aim in this section is to derivate an algorithm which calculates all
existing minima of the error function and choose the pose which minimizes it globally.
The starting point of this algorithm is a �rst known pose (R, t) which is estimated with
the pose estimation algorithm presented in sction 3.1. In the following the geometrical
conditions of the camera landmark system are illustrated before presenting the derivation
of the algorithm.

3.2.1 Geomatrical conditions

Figure 3.5 shows the two coordinate systems with their origins in the point CC for the
camera and CM for the model which represents the landmark in our case. The relation
between them is given by the rotation matrix R and the translation vector t which
describes its distance. The optical axis of the camera points in the direction of the
z-axis of the coordinate systems. On the right we see the model points P1 and P2 in
the plane Π. By rotation the model about the y-axis for an angel α we obtain the
model points P1α and P2α in the plane Πα. These points are projected to the normalized
image plane as v1 and v2. Like in the section 3.1.3 the idealiyed pinhole model is used
to describe the relation between the camera and the landmark which leads to the same
equations.
In sectoin II of [23] it is shown that for every angle α there may axist an angle β,
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Y
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t
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^

Π

ΠαΠβ

Figure 3.5: geometrical conditions

depending on the parameters, which also leads to a local minimum of an error function.
Knowing this in the next section an algorithm is presented which estimates all the
appearing minima of the corresponding error function.

3.2.2 Derivation of the algorithm

Derivating this algorithm it is begun with the same equations 3.14 and 3.22 like in the
algorithm presented in section 3.1. It is tried to get an error function in which the
rotation matrix R only depends on a rotation about the y-axis. To reach this there are
applied two algebraic steps which are shown in the following. The relation between the
object and the image points is

q = Rp+ t (3.36)

and the error function is

E(R̂, t̂) =
n∑
i=1

∥∥∥(I − V̂i)(R̂pi + t̂)
∥∥∥2

(3.37)
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3.2 Pose ambiguity

where

V̂i =
v̂iv̂

t
i

v̂ti v̂i
(3.38)

is the observed orthogonal projection matrix with v̂i describing the measurements of the
vectors to the normal image plane. The �rst step in order to get to an error function
which only depends on the rotation around the y-axis is to de�ne a matrix Rt that
satis�es

Rtt̂ =

 0
0∥∥t̂∥∥
 . (3.39)

This step is done because further on in equation 3.50 the rotation about the z-axis R(γ)
can be factored out from the error function so that only the desired rotation around the
y-axis is left. Without loss of generality equation 3.36 can be rewritten as

q̃ = R̃p+ t̃ (3.40)

where

q̃i = Rtq̂i t̃ = Rtt̂ R̃ = RtR̂ (3.41)

is de�ned. After that transformation the error function in equation 3.37 converts into

E(R̃, t̃) =
n∑
i=1

∥∥∥(I − V̂i)(R̃pi + t̃)
∥∥∥2

. (3.42)

The second step is about to eliminate the part of R which represents the rotation about
the x-axis the matrix Rx(α). Therefor the rotation matrix R̃z is introduced such that

E(R̃, t̃) =
n∑
i=1

∥∥∥(I − V̂i)(R̃R̃zR̃
−1
z pi + t̃)

∥∥∥2

. (3.43)
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Chapter 3 Pose Estimation from video images

With this transformation it is further de�ned

p̃i = R̃−1
z pi (3.44)

which has as result a rotation of the objects points only about the z-axis. That doesn't
change the fact that the model still stays planar with z = 0. In equation 3.43 remains
the rotation matrix R̃R̃z which can be decomposed into the three elementary rotation
about the the x, y and z axis respectively as follows

R̃R̃z = Rz(γ̃)Ry(β̃)R(α̃). (3.45)

Now the rotation Rx(α̃) about the x axis can be eliminated by selecting R̃z such that
α̃ = 0. With the modi�cations so far equation 3.36 has changed into

q̃i = Rz(γ)Ry(β)p̃i + t̃ (3.46)

and the error function 3.37 into

E(γ, β, t̃) =
n∑
i=1

∥∥∥(I − V̂i)(Rz(γ)Ry(β)p̃i + t̃)
∥∥∥2

. (3.47)

As shown in section II of [23] there can ocurre two minima of the error function with
respect to the rotation about the y-axis. Like it can be seen in equation 3.47 E(γ, β, t̃)
still depends on the rotation about the z-axis. To eliminate this rotation so that the
error function only depends on β it can be made use of the rotation matrix Rt which
was indroduced in equation 3.39 in this section. From equation 3.39 is known that

t̃ =

 0
0∥∥t̂∥∥
 (3.48)

and with Rz(γ) as a rotation matrix about the z-axis it is e�ective that

Rz(γ)t̃ = t̃. (3.49)
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3.2 Pose ambiguity

Thus equation 3.46 can be rewitten as

q̃i = Rz(γ)
(
Ry(β)p̃i + t̃

)
. (3.50)

By placing Rz(γ) outside the brackets it can be seen that it becomes a rotation about the
optical axis of the camera and so it only e�ects image coordinates and doesn't change the
geometric relation between the image plane and the landmark plane. With this step the
�nal relation between image coordinates and landmark coordinates shown in equation
3.50 as well as the error function

E(β, t̃) =
n∑
i=1

∥∥∥(I − V̂i)Rz(γ)
(
Ry(β)p̃i + t̃

)∥∥∥2

(3.51)

are given and the estimation of the local minima can be started. At �rst the optimal
translation t̃opt is calculated by setting the �rst derivative of E(β, t̃) with respect to t̃ to
zero

∂E

∂t̃
= 0. (3.52)

Thereby we get a solution for t̃opt to

t̃opt(β) =
1

n

(
I − 1

n

∑
j

Ṽj

)−1∑
j

(
Ṽj − I

)
Rz(γ)Ry(β)p̃j (3.53)

= G
∑
j

(
Ṽj − I

)
Rz(γ)Ry(β)p̃j (3.54)

where G is a constant which depends only on measured image points ṽi. By plugging in
t̃opt(β) in equation 3.51 we obtain an error function which now only depends on β and
the rotation about the y-axis respectively

E(β) =
n∑
i=1

∥∥∥∥∥(I − V̂i)Rz(γ)Ry(β)p̃i +G
∑
j

(
Ṽj − I

)
Rz(γ)Ry(β)p̃j

∥∥∥∥∥
2

. (3.55)
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Chapter 3 Pose Estimation from video images

Because it is very troublesome to calculate with trigonometrical functions

Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 (3.56)

is simpli�ed by substituting

βt = tan(
1

2β
) (3.57)

and we get

Ry(βt) =
1

1 + β2
t

1− β2
t 0 βt

0 1 + β2
t 0

−2βt 0 1− β2
t

 . (3.58)

To estimate the optimal βt we plug in equation 3.58 into equation 3.55 and after that
the resulting error function is derivated such that

∂E(βt)

∂βt
= 0 (3.59)

which delivers an polynomial equation of degree four and can be easily solved. Naturally
the solution of this polynomial consists of four values for βt where two of them represent
maxima and the other two minima. The two minima in which we are interested can be
sorted out by using the condition

∂2E(βt)

∂β2
t

> 0. (3.60)

With the values of the solution for βt we get by resubstituating according to equation
3.57 the solution for the rotation about the y-axis Ry(β)i and the translation ˜t(β)i. To

obtain the pose P̂i = (R̂i, t̂i) which describe the relation between the camera and the
landmark the transformations of equation 3.45 and 3.41 are undone. These received
poses are used as starting points for the algorithm presented in section 3.1 to get the
�nal poses P ∗i . At last as the correct pose among the P ∗i is decided the one with the
lowest value of the error function.
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Chapter 4

Data fusion

The sensor based pose estimation for autonomous robots inherents some problem. If
there is only the information of one sensor available you have to rely on its correctness.
If there are various data at your disposal as possible di�erent kinds of sensors you are
able to minimize the error of estimation. Therefore it can be said that the more senors
or information are available the more accurate the result will be. Of course there is the
question of computing power and real time data processing which limits the use of an
arbitrary amount of sensors. Needless to say that for fusing data from di�enent sensors
or di�erent data from the same sensor a separate algorithm is needed to combine these
information. An introduction to this theory and some applications are given in [20] and
[18]. There are a few approaches which give a solution of the fusion problem. One of
them is stochastic weighting function according to the so called Monte Carlo method
which its de�nition in [5] and some implementation in [25] and [3]. Another approach is
the maximum likelihood method which estimates the stochastic characteristics according
to a sample of the total [10]. It can also be applied to fuse sensor data [21] and [26]. The
Bayesian probability theory like it is shown in [16], [8] and [6] can be seen as a method
to reach the data fusion. Also �lters can be used to solve this problem how it is done in
this work. Here the data fusion is applied according to the kalman �lter theory based
on [11] and [19].
The �rst part of the chapter forms the estimation of the covariance in 4.1 which is needed
in 4.2 to implement the kalman �lter.
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Chapter 4 Data fusion

4.1 Covariance

Before the algorithm of fusing data according to the theory of Kalman can be applied it is
needed to know the statistical distribution of the signals in form of the covariance matrix
CR. The covariance matrix represents some kind of weight to give more importance to
those informations which are more precise. In our case these are the informations from
the images captured closer to the landmark and with less distorsion to it. In general it
is very di�cult to account for all of the parameters which play a roll in the estimation
of CR. After taking some measurements and comparing whose results with the covari-
ance matrix calculated with the algorithm it can be seen that they behave the same
way. Therefore the calculation of this uncertainty matrix CR is derived with the help of
[24] which discusses the uncertainty model of robots with on board cameras observing
arti�cial landmarks in general. The landmarks have the shape shown in �gure 2.3.

landmark

l2
φ
1

φ
2

x

y

x

y

Figure 4.1: robot position relative to the landmark

In this section a manner of estimating the covariance matrix, as a measure of the uncer-
tainty of the robot pose, is presented. In a �rst part the equations to calculate the pose
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4.1 Covariance
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Figure 4.2: landmark image dimension

of the robot relative to the landmark are shown like it is demonstrated in �gure 4.1.
This way to calculate the robots position isn't used in combinatin with the algorithm
derived in sction 3.2 because the translation vector and the rotation matrix are needed
instead of just the distance and the angels ϕ1 and ϕ2.

At �rst the vector

P =


x1

y1

x2

y2

 (4.1)

with the x coordinates as the centers of the left and right boarder of the landmark image
and the y coordinates as the half length of the left and right boarder. They can be read
out of the image in the way illustrated in �gure 4.2. [24] shows that with the vector P
obtained from the captured landmark image the equations to calculate the pose of the
robot result to
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a || xcam
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Figure 4.3: geometrical relations

l = vl

√
λ2 +

(
x1y2+x2y1
y1+y2

)2

2y1y2
y1+y2

(4.2)

ϕ1 = − arctan

(
x1y2+x2y1
y1+y2

λ

)
(4.3)

ϕ2 = arctan

(
λ

y1 − y2

−x1y2 + x2y1

)
(4.4)

where λ is the focal length and vl the half width of the landmark frame, see �gure 4.2.
These transformations can be expressed as

L = fpl(P, λ, vl). (4.5)
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Figure 4.4: mathematical relations

The origin and orientation of the global coordinate system are described by the camera
coordinate system at the point where the �rst image is captured. In �gure 4.3 and 4.4
the deviation of the equations to calculate the robot pose in the global frame is shown.
At �rst the geometrical relations a demostrated before the mathematical relations are
given. So the location of the landmarks is known in the global frame and the location
of the robot can be estimated to

xr = xli − l cos(φli + ϕ1 − ϕ2) (4.6)

yr = yli + l sin(φli + ϕ1 − ϕ2) (4.7)

φr = φli − ϕ2. (4.8)

where xr and yr are the coordinates of the robot and the origin of the camera frame
respectively and φr is its orientation. xli , yli and φli mean the same with respect to
the frame of the detected landmark. ϕ1 and ϕ2 are ilustrated in �gure 4.3. The recent
presented equations can be merged to

XR = flx(XLi
, L) (4.9)

where
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Chapter 4 Data fusion

XLi
=

xliyli
φli

 (4.10)

is the vector of the coordinates of the i-th landmark in the global frame. So far the
equations to locate the position of the robot are shown. This is not the main item in
this section but they are needed to estimate the the uncertainty of the pose described
by the covariance matrix CR in which we are interested. CR has the following general
appearance

CR =

 σ2
x σyx σφx

σxy σ2
y σφy

σxφ σyφ σ2
φ

 (4.11)

where the diagonal shows the statistical dispersions of the parameters and the non
diagonal values describe the relation between the two di�erent parameters. There are
three parts which have to be observed concerning the uncertainties. At �rst there is
the error of the calculation of the coordinates of the camera points P from equation
4.1 caused by the limited resolution. After this there is the calculation of the relation
between the robot and the landmark and at last the estimation of the robots position
in the global frame. Starting with the primary uncertainty a �rst matrix

CP =


σ2
x1

0 0 0
0 σ2

y2
0 0

0 0 σ2
x2

0
0 0 0 σ2

y2

 (4.12)

can be indicated. σx describes the horizontal discretization error and can be estimated
as

σx =
w′

Rw

(4.13)

with Rw as the horizontal resolution and w′ as the width of the camera. On the other
hand σy describes the vertical discretization error and can be estimated as
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4.1 Covariance

σy =
h′

Rh

(4.14)

with Rh as the vertical resolution and h′ as the height of the camera. The next step
is to express the uncertainty of the transformation L given by the equations 4.2 to 4.4.
This is done by the covariance matrix

CL =

 σ2
l σϕ1l σϕ2l

σlϕ1 σ2
ϕ1

σϕ2ϕ1

σlϕ2 σϕ1ϕ2 σ2
ϕ2

 . (4.15)

Since the only variables of the transformation L are the points given in P the matrix CL
is estimated taken into account the recent shown insecurity CP in equation 4.12. And
because of the fact that the equations 4.2 to 4.4 are nonlinear further it has to be used
the �rst order linearization

CL = JPCPJ
T
P (4.16)

where JP is the jacobian matrix of equation 4.5 de�ned as

JP =
∂fpl
∂P

. (4.17)

The last step to reach the desired matrix CR is to estimate the e�ect of the error
distribution on the estimation of the position of the robot in the global frame given
by 4.9. Again it is used the �rst order approximation caused by the same reason of
nonlinearity of the transformation. So the �nal result yields to

CR = JLCLJ
T
L (4.18)

where JL describes the jacobian matrix of equation 4.9 de�ned as

JL =
∂flx
∂L

. (4.19)
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Chapter 4 Data fusion

4.2 Kalman

In this section the data fusion by means of the Kalman �lter is shown. The base of
the Kalman �lter is the set of the state space models of the state and the measurement
dynamics. Beginning with these equation the Kalman �lter is able to give conclusions
about the exact state from the knowledge of observations solely containing errors. To
put it simply it just eliminates the noise caused by the measurement device. The Kalman
�lter can be applied in real time systems for example in the case of tracking or to fuse
several information from di�erent sensors.
At �rst there is explained the derivation in general of the Kalman �lter. After that
it is adapted to the static case before it is extended by considering the velocity to the
dynamic case.

4.2.1 General derivation

At �rst the derivation of the common discrete kalman �lter is presented here. The
starting point of the kalman �lter theory is a linear stochastic time discrete di�erence
equation

xk = Axk−1 +Buk + wk (4.20)

where xk is the actual state and the state transition matrix A gives the relation to the
previous state xk−1. The control-input matrix B describes the in�uence of the known
input uk. The unknown inputs wk are assumed to be a stochastic signal with a normal
distribution

p(w) ∼ N(0, Q) (4.21)

with zero mean and covariance Q. The second part of the system builds the measurement
equation

zk = Hxk + vk (4.22)
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4.2 Kalman

with the actual measurement zk, the observation matrix H which represents the relation
between the state and the measurement. vk is the term of the unknown signals of the
measure equation also with a normal distribution

p(v) ∼ N(0, R) (4.23)

with zero mean and covariance R. The idea of the kalman �lter is to predict a new state
x̂−k at the step k at �rst which is called the a priori state estimate. In the second step
it is corrected by means of the measurement to the so called a posteriori state estimate
x̂k. Starting with the prediction, also called time-update, step the state in the k-th step
yields to

x̂−k = Ax̂k−1 +Buk (4.24)

and the corresponding covariance to this expected value of the state is calculated to

P−k = APk−1A
T +Q. (4.25)

In equation 4.24 x̂−k is just estimated from the known values of the state equation 4.20.
The covariance P−k of the state prediction is computed from the covariance of the un-
known process signals Q and the uncertainty Pk−1 of the estimation of the previous
state. The second step is the correction step or measurement-update. In order to be
able to correct the predicted state the right way a weight matrix K is introduced

Kk = P−k H
T
(
HP−k H

T +R
)−1

(4.26)

giving more consideration to the real measurement or to its estimation. R speci�es the
covariance of the measurement noise in equation 4.22. With the Kalman gain the a
posteriori state estimation it's error covariance can be calculated to

x̂k = x̂−k +Kk

(
zk −Hx̂−k

)
(4.27)

Pk = (I −KkH)P−k . (4.28)

With equation 4.26 to 4.28 the two extrema can be demonstrated which means an exact
estimation or an exact measurement. If there is an exact estimation of the prediction
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Figure 4.5: Kalman predictor-corrector

x̂−k the a priori estimate error covariance P−k tends to zero. For that the kalman gain
converts to

lim
P−k →0

Kk = 0 (4.29)

and therewith the equations 4.27 and 4.28 result to

x̂k = x̂−k (4.30)

Pk = P−k , (4.31)

which means that there is no accumulation of the error. On the other hand if there is
an exact measurement without error, means that R tends to zero the kalman gain yields
to

lim
R→0

Kk = H−1 (4.32)

which causes after equations 4.27 and 4.28 that
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4.2 Kalman

x̂k = zk (4.33)

Pk = 0. (4.34)

For recapitulation �gure 4.5 shows the whole circuit of the predictor-corrector in one
diagram.

4.2.2 Static Kalman �lter

To begin with the algorithm to fuse the information of two landmarks captured in the
same image primarily the static version of the kalman �lter will be used, because of
the fact that every picked image can be seen as a new situation in which the pose has
to be estimated. So the starting point are the two pose estimations z1 and z2 from
the algorithm presented in chapter 3. The corresponding covariance matrices calculated
in section 4.1 are σ1 and σ2. About the covariance is to say that it depends on the
distance and the rotation between the landmark and the robot. The lower the value
of the distance and the angel the lower are the values of the covariance matrix which
means that the estimation is more precise. To assure that the estimation which is more
exact is assessed with a greater value the weighting function results to

w = σ1 (σ1 + σ2)
−1 z2 + σ2 (σ1 + σ2)

−1 z1 (4.35)

where w is the fused pose estimation. This means that if the measurement z1 has a
greater uncertainty and therefore greater values of σ the second measurement z2 gets
a higher weight. Further it can be seen that if the estimates are of equal precision the
optimal estimation is just the mean of z1 and z2. The appropriate covariance matrix to
w can be calculated to

1

σ2
w

=
1

σ2
1

+
1

σ2
2

. (4.36)

The calculated uncertainty matrix σw is smaller than the smallest one of the estimations
zi. Now, if equation 4.35 is regarded more closely it converts into

w = z1 + σ1 (σ1 + σ2)
−1 (z2 − z1) (4.37)
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Figure 4.6: data fusion with Kalman �lter

after outlining. Thus equation 4.37 can be considered as the a posteriori kalman �lter
equation 4.27

x̂k = x̂−k +Kk

(
zk −Hx̂−k

)
(4.38)

with z1 as x̂−k and the kalman gain de�ned as

Kk = σ1 (σ1 + σ2)
−1 . (4.39)

In �gure 4.6 can be seen the fusion of two arbitrary signals z1 and z2 with their expected
values E(z1) = 1 and E(z2) = 6 and the coresponding variances σz1 = 2 and σz2 = 3.
The �gure shows that the result w lies nearer to z1 and has a smaller variance.
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Figure 4.7: behavior considering velocity

4.2.3 Dynamic Kalman �lter

So far just the static case is been observed which means that the kalman �lter only
combines the information of the two landmarks captured in one image.

In this case every image taken is considered as a new situation without taking in account
the data of former estimations. With the dynamic kalman �lter the velocity of the robot
is calculated to make an a priori prediction of the pose which will be corrected in
a following step by the fused information of the measurement, compare to �gure 4.5.
Since the time of each captured image is known the velocity can be calculated by the
time di�erence of the two images and the covered distance. This results in

vj =
xj−1 − xj−2

tj−1 − tj−2

(4.40)

where vj is the velocity used for the estimation in the actual step j and x and t are the
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position and the time, respectively, of the two former steps. Because of the fact that the
time information is given the uncertainty of the velocity estimation is just the addition
of the cavariance matrices of the pose estimations

σvj
= σzj−2

+ σzj−1
. (4.41)

With the estimated velocity and its covariance matrix the pose prediction results into

µpred,j = xj−1 + v ∗ (tj − tj−1) (4.42)

and the corresponding covariance

σµpred,j
= σj−1 + σv. (4.43)

The next step is just like explained in subsection 4.2.2. The prediction of the pose
as result of the equation 4.42 is combined with the fused pose estimation from the
landmarks. This happenes according to the equations 4.35 and 4.36. Figure 4.7 shows
the behavior of the covariance during time. Here w(t2) is the a posteriori value of the
Kalman �lter fusion at the time step 2. With the time passing the prediction of the
position gets more and more imprecise until the t′3 which is the time right before the
next measurements are taken.
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Simulation results

Figure 5.1: robot - landmark setting

In this �nal chapter the simulation results of the recent shown algorithm are presented.
The simulation was operated by GNU/Octave and Matlab. At �rst, in section 5.1, there
is demonstrated the performance of the pose estimation algorithm derived in chapter 3.
After that the estimated odometry of the robot by means of the mentioned algorithm is
compared with the measured odometry only considering one landmark. And �nally in
section 5.3 the results of the algorithm with and without using the data fusion of two
landmarks realized by a Kalman �lter is illustrated.
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Chapter 5 Simulation results

5.1 Pose estimation

In the �rst section of the chapter there are presented the results of the algorithm to
estimate just the position and orientation of the robot to one landmark. The robot or
the camera respectively stands still and doesn't cover any distance. In �gure 5.1 the
setup of the robot landmark composition is demonstrated. The exact distance to the
landmark is measured with a laser distance meter, see �gure 5.1.

Figure 5.2: distance camera - landmark: 1m
Figure 5.3: distance camera - landmark:

1.5m

The results can be seen in �gures 5.2 to 5.6 where the distances of the camera to the
landmark are 1m, 1.5m, 2m, 2.5m and 3m. The output of the algorithm is represented
by the vector

Q =


1.01876
1.52708
2.03572
2.54425
3.0522

 , (5.1)

so that the error yields to
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5.1 Pose estimation

Figure 5.4: distance camera - landmark: 2m
Figure 5.5: distance camera - landmark:

2.5m

Figure 5.6: distance camera - landmark: 3m
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E =


0.01678
0.01962
0.02472
0.03525
0.0522

 (5.2)
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Figure 5.7: error chart

If we examine �gure 5.7 it can be seen that the error of pose estimation algorithm grows
exponentially acording to the growing distance between camera and landmark. The
in�uence of the angle can be seen if the �gure 5.3 and 5.8 are compared. Both have
the distance of 1.5m to the landmark. But �gure 5.8 delivers 1.6452 as the value of the
distance and so a greater error. The fact that the algorithm has an error already from
short distances and that this error has always the same sign does not play a signi�cant
role because the aim of the work is to estimate the odometry of the covered distance.
Therefore the diferences between results are taken and so the errors cancel each other.
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5.2 Estimated and measured odometry with one landmark

Figure 5.8: distance camera - landmark: 3m angular

5.2 Estimated and measured odometry with one

landmark

Figure 5.9: �rst image of the sequenz Figure 5.10: second image of the sequenz

In this second section the estimation of the odometry is examined. Therefore the pictures
taken by the camera are the input to the algorithm and its result is compared to the
measurement of the device shown in �gure 5.1. In �gure 5.9 to 5.13 a few positions of the
robot are illustrated during its motion away from the landmark to give an understanding
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of the path covered by the robot. In this case just one of the two landmarks are taken
into account for the estimation. So it can be compared the results of not using data
fusion and the case of using it, presented in section 5.3. The movement done by the
robot is to start close by the landmark and move straight backwards.

Figure 5.11: third image of the sequenz Figure 5.12: fourth image of the sequenz

Figure 5.13: last image of the sequenz

Figure 5.14 shows the lateral movement towards the x-axis of the camera frame. As can
be seen, the values stay quite close to zero. That's because the robots execute a linear
movement backwards along the negative direction of the z-axis. This is shown in �gure
5.15 The curve starts at zero and proceeds like a straight with a constant slope. In the
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Figure 5.14: developing of the x-coordinate

18 20 22 24 26 28 30 32
−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

time [s]

di
st

an
ce

 in
 x

 d
ire

ct
io

n 
[m

m
]

Figure 5.15: developing of the z-coordinate
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Figure 5.16: developing of the angle ϕ

experiment it was tried to drive the robot at a constant velocity. The last �gure, 5.16,
demonstrate the developing of the rotation angle ϕ. Here it is the same reason like with
the x-axis. The value of ϕ stays around zero because of the motion without turning.
The initial and the �nal value of the estimated pose of the robot deliver a result for the
distance covered of

Odoest = 1.6911m. (5.3)

The odometry measured is

Odomeas = 1.861m. (5.4)

And so the odometry using only one landmark gives an error of 0.0913 and 9.13%
respectively.
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Figure 5.17: data fusion from two land-
marks (x-direction)
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Figure 5.18: data fusion of the velocity
estimation and the land-
mark fusion (x-direction)

5.3 Estimated and measured odometry by means of

data fusion

At last the simulation results using the data from two landmarks fused by the Kalman
�lter are shown in section 4.2. Here the same sequence of pictures is used as in section
5.2. The diference is that now the information of both landmarks is used, if they are
detected. In the �gures 5.17 and 5.18 the process of the movement in direction of the x-
axis is illustrated. It describes the displacement to the left or right respectavely acording
to the starting point. Since the covered distance is done in form of a straight line the
values of the x coordinate should stay in a small area around the zero. In �gure 5.17
the resultant graph is the fusion, red, of the information from the two landmarks, blue.
Figure 5.18 shows the result of the fusion, red, combined with the pose prediction by
means of velocity estimation. In �gure 5.17 the data of the two landmarks is replanished
well according to the fusion. In the right �gure the fusion with the estimated velocity is
disturbed at the end of the simulation because the robot was driven by remote control
and so stopped abruptly.

In �gure 5.19 and 5.20 the results concerning the z coordinate are expressed. This is the
direction of the robot movement away from or to the position of the �rst picture taken.
This graph should demonstrate a nearly linear curve because the robot was tried to
drive with a canstant velocity. Like in the case of the x coordinate the left �gure shows
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Figure 5.19: data fusion from two land-
marks (z-direction)
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Figure 5.20: data fusion of the velocity
estimation and the land-
mark fusion (z-direction)
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Figure 5.21: data fusion from two land-
marks (rotation about y-
axis)
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Figure 5.22: data fusion of the ve-
locity estimation and the
landmark fusion (rotation
about y-axis)

the fusion without considering the velocity estimation. In the right one the calculated
velocity as prediction is fused with the result given by the two landmarks. It can be seen
that during this motion the pose estimation according to the two landmarks as well as
to the velocity estimation is very good because there is only a little di�erence between
the curves. This shows the accurate work of the algorithm calculating the distance.
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In the last two �gures, 5.21 and 5.22, the angle of rotation is shown. Like in the �gures
before �gure 5.21 shows the fusion of the estimated poses acording to the landmarks and
�gure 5.22 illustrates the combination of this result with the angular velocity. Like said
before, since it is a srtraight movement of the robot the angle value has to stay around
zero. Figure 5.21 is a good example of the data fusion of the two landmarks. With the
help of the fusion the angle dynamic results to the espected signal around zero.
The desired result of the odometry of the robot is estimated

Odoest = 1.8403 (5.5)

and measured

Odomeas = 1.861. (5.6)

And so the estimated result has only an error of 0.0111 or 1.11%. If the �gures 5.20
and 5.15 and the equations 5.5 and 5.3 respectively are compared it can be seen that
the estimation with the help of data fusion gives a better result. To give a review of the
simulation results shown in this chapter it can be said that the algorithm to estimate
the pose of a robot gives, absolutely seen, only su�cient performance. This means that
if only one picture is taken the error of the pose estimation is quite big. But if the
purpose is to calculate a distance covered by or the odometry of a vehicle it delivers a
good result because the diference of the measurements are taken. And further it can be
improved by taking the information of the velocity estimation into account.
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Chapter 6

Conclusion

In this thesis an important problem in the �eld of robot science is discussed. A vehicle
equipped with a camera for orientation is the object of interest, see �gure 2.1. The posed
aim was to apply and examine an algorithm to estimate the distance and rotation of the
robot in relation to a landmark, �gure 2.3, and further to estimate the odometry of the
distance travelled by the robot. Therefore two papers are taken as the basis to realize
the postulated algorithm. In the �rst step there is calculated the relative pose of the
robot in respect of the landmark. As result it marks a minimum of an error function.
Since in some cases there can occur two local minima the second algorithm guarantees
that the correct one is chosen as result. Using the relative position at each moment
where a picture is taken the distances between them can be calculated. If the �rst pose
is set as initial point the odometry of the robot can be estimated. To reach a maximum
degree of accuracy there is used the Kalman Filter theory to fuse data from di�erent
origins.

The topics that could not be realized in this work can be seen as an outlook of further
works. The algorithm can be expanded to treat a robot which drives an arbitrary path.
Which means that it has to handle curves and changes in the velocity. If larger distances
are covered another issue is to manage the crossing from one landmark to another and
to consider the case if one gets lost or isn't detected.
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