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Abstract—

This paper presents a method to obtain odometry infor-

mation using a monocular camera. It is intended for a ve-

hicle moving on a plane, smooth surface. Only one camera

is used and odometric information is obtained processing

image blocks in the Fourier domain. From different shifts

among image blocks an homography that can translate the

set of features associated with the vehicle pose of a given

time interval to those of the vehicle’s initial pose can be

computed.

I. Introduction

Since long time video sensors intended for navigation
of terrestrial vehicles have been of interest within the
Robotics community. Notwithstanding several navigation
schemes developed, those based in vision are still con-
sidered because their good accuracy/price ratio. Steady
growth of on-board computer power is making video-based
navigation ever more attractive, for terrestrial as well as
aerial vehicles. Literature gives the name of ”visual odom-
etry” to the process of obtaining measurements of pose
variations (i.e. position + orientation) of a given robot us-
ing monocular or stereo camera arrangements. This work
introduces a method intended for visual odometry based on
spectral features. It uses a technique of image registering
known as phase correlation for calculations of homography
between different poses of the system with respect to the
initial.

Recent papers explore different possibilities of visual
odometry measurement, using stereo or monocular systems
[26] [8] [17] [19], considering six DOF movements (6-DOF)
[1] [14] or 3-DOF systems [4] [24] [19], with cameras car-
ried by humans [7] or in helicopters [1] [14], with cameras
aimed to the ceiling [5], or to the floor [7] or looking at
the front [24] [6], there is also a report using an optical
mouse as odometric sensor [21]. In most of these works the
methodology used is similar: it deals with finding features
in two successive images to infer the camera motion (ego-
motion) or for building a 3D map where to localize the
camera(s) (SLAM) [20] [23], using some statistical method
as RANSAC [10] [18] or MLE [27] to improve fitting of the
set of features found with the movement model.

Optical flow is also used as in [3], where position info is
obtained by integration of translational velocity of the floor
and orientation by integration of angular velocity of the
image ceiling. Errors reported in this paper are about 3.3%
in the most favorable case comprising indoor navigation on

a carpet.
In a growing group of cases, visual odometry is used

along with other sensors as global positioning system re-
ceivers (GPS) or inertial units (IMU), fusing information
by means of Kalman or extended Kalman filters. If the
three sensor systems are available as in [26] prevailing strat-
egy is to increment the priority of data arriving from the
better performing sensor at the time, and so IMU is pre-
ferred where accelerations are prevailing, visual odometry
when velocity information is relevant and GPS whenever
accelerations and speeds are quite small.

II. Egomotion estimation

For terrestrial vehicles moving on a single plane the prob-
lem is reduced to the estimation of each of the three inter-
vening DOFs. Considering a camera rigidly attached to
the robot body and knowing the rigid transformation be-
tween the camera and the robot coordinates system [13],
pose changes of the robot can be calculated by estimating
the pose change of the camera’s reference frame.
We assume for the moment that the camera has its focal

axis normal to the plane of movement. Let us represent a
point P in the (F ) coordinates system by PF . In this case
a set of points in the world coordinates system (WCS) PW

i

belonging to the navigation plane will have in the frame of
an image captured at time A coordinates PA

i . The same
set of points in the image frame taken at time B > A will
have coordinates PB

i . Because of the planar robot move-
ment, the relation between the two coordinates systems is a
rigid transformation [11]. Finally, if camera parameters are
known [25] then it is possible to refer the set of points to the
camera coordinates system (CCS) and therefore calculate
the change of pose of the vehicle finding the rigid transfor-
mation existing among the camera’s coordinates systems
at time A and B.
Without loss of generality we assume the plane of move-

ment is on z = 1 in the CCS, so that the set of point’s
coordinates in the CCS at time A are

PA
i =

(

xA
i , y

A
i , 1

A
)T

(1)

these are homogeneous coordinates of points in R2. The
transformation between CCS when the robot is moving in a
plane is a planar Euclidean transformation (a composition
of translations and rotations in R2). Representing with
RAB the rotation matrix describing the frame (B) in the
coordinates system (A) and with tA the translation vector
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between frames, a point PB can be written in coordinates
of the system (A) with

PA = RABP
B + tA (2)

In homogeneous coordinates this planar transformation
is given by an unique matrix H called homography matrix,
in this case

HAB =

(

RAB tA

0
T 1

)

(3)

with 0 a null vector.
When the robot moves the same set of points is cap-

tured from the camera at times A < B < C < · · · and
represented in the moving CCS with coordinates PA

i , PB
i ,

PC
i , etc. respectively. To obtain the coordinates of the

points in the frame (A) knowing them in frame (C) we can
first obtain the coordinates of the set in the frame (B) and
then maps it into the frame (A)

PA
i = HAB PB

i = HAB

(

HBC PC
i

)

= HABHBC PC
i (4)

or directly apply the complete homography from (C) to
(A)

PA
i = HACP

C
i (5)

from (4) and (5) we have HAC = HABHBC .
The homography matrix that links the coordinates of the

set in the actual frame (that is at the actual time) with the
first frame give us the change of pose of the camera relative
to the origin, and therefore the change of pose of the robot.
According to (3) and (5), the translation of the robot at
time K in homogeneous coordinates is given by the third
column of HAK and the rotation by the rotation matrix
RAK forming this homography. At this point to estimate
the homography between frames is equivalent to estimate
the change of pose of the robot.

Fig. 1. Working platform

III. Image rectification and spectral features

Image features normally used for visual odometry are
corners and/or edges. A Harris detector is classically used

to find corners [12], and then movement estimation is ob-
tained using Lukas-Kanade method [16]. Unfortunately
this kind of features are not always present on an im-
age, specially on those captured from floors with homo-
geneous textures where gradient is very small. Another
difficulty arises from image features that are not uniformly
distributed in the captured frame, which may cause a bad
estimation of vehicle’s odometry. When dealing with this
problem, as an example, in [7], error introduced by the mo-
mentaneous loss of image useful features is made equivalent
of the slipping of the wheels of a vehicle with odometry
based in optical encoders attached to them.
An alternative to gradient-based image features is image

registration using spectral features.

A. Phase correlation method

If the vehicle moves on a plane surface, pictures of the
floor taken by its camera will show displacements and ro-
tations from one another in accordance with vehicle move-
ments. Computing successive shifts and rotations from the
obtained images it is possible to figure out the vehicle’s
change of pose. The process of computing the variation
between two images, namely the determination of displace-
ment and rotation is known as image registration.
There are several methods and techniques for image reg-

istration capable to find and compensate for image pertur-
bations such as shift, scaling, rotation, deformation, per-
spective effects, etc. [2]. Taking into account first only
the displacement between images due to sensor movement
the method known as phase correlation can be used for
calculations [15].
The Phase Correlation Method (PCM) is based on the

fact that the Fourier transforms of two identical functions
shifted one from the other differ only in phase. This is also
known as Fourier’s shift theorem.
Let two images ia and ib differing only in a displacement

(u, v), so that

ia(x, y) = ib(x+ u, y + v) (6)

then their Fourier transforms are related by

Ia(ωx, ωy) = ej(uωx+vωy)Ib(ωx, ωy) (7)

where Ia and Ib are the Fourier transforms of images ia and
ib, and u and v are the amounts of the displacements of the
images in each axis. That means that both transforms are
equal in magnitude but they have a difference in phase
that is directly related with the displacement between the
images. This displacement can be computed using (7) cal-
culating the cross power spectrum of Fourier transforms Ia
and Ib.
The cross-power spectrum (CPS) between two complex

functions is defined as

F (ωx, ωy)G
∗(ωx, ωy)

|F (ωx, ωy)||G∗(ωx, ωy)|
(8)

The CPS of a function with itself is 1. Then, computing
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the cross-power spectrum of Ia yields

Ia(ωx, ωy)I
∗

a(ωx, ωy)

|Ia(ωx, ωy)||I∗a(ωx, ωy)|
= 1 (9)

where I∗a is the conjugate of Ia. Using (7), (9) can be
written as

Q(ωx, ωy) =
Ia(ωx, ωy)I

∗

b (ωx, ωy)

|Ia(ωx, ωy)||I∗b (ωx, ωy)|
= ej(uωx+vωy) (10)

obtaining the phase correlation matrix. This mean that the
phase of the cross power spectrum among the two trans-
forms is the difference of phase between them. If the inverse
transform of the phase correlation matrix is computed an
impulse centered exactly in the value of the displacement
between the pictures is obtained

F−1[Q(ωx, ωy)] = q(x, y) = δ(x− u, y − v) (11)

Using discrete Fourier transforms the impulse changes into
an unit pulse centered in (u, v).

B. Rotation and translation

Using PCM a good measure of displacement can be ob-
tained if the images are not rotated with respect to each
other. Although PCM can be extended to register images
that are only rotated as described in [22], to detect rota-
tions it is mandatory to change to polar coordinates, and
so interpolations are needed for those values falling out of
the grid. In the case of both translation and rotation are
present, the coordinates transform results very expensive
in terms of computer time, since it is necessary to find
by iteration the rotation angle that best approximates the
phase correlation matrix to an unit pulse. Instead, we com-
pute rotations using the information of the displacements
taking place in different regions of images. This is a good
approach whenever rotations between successive images are
small. This means that visual odometry can be performed
using information from zones of the image and it is not
necessary to work on the whole image. This zones of the
image are the meaningful features for pose determination,
and as they are in Fourier’s domain they are called spectral
features.

A spectral feature is the representation in Fourier’s do-
main of a portion of the image of 2n × 2n, n being a posi-
tive integer which value is fixed from the maximum allowed
displacement between two images; which in turn is a func-
tion of the vehicle’s velocity. Size is selected taking into
account the efficiency of fast Fourier’s transform on data
arrays whose dimensions are integer powers of 2.

Spectral features have certain advantages over those tra-
ditionally used (corners, edges, blobs), since they must not
be looked after, and so no special interest operators (such
as Harris) must be used as a first step of feature extrac-
tion. It must be remembered that a spectral feature is a
region of the image with predefined size. They use spectral
information of the image, which is better when navigating

in regions with little gradient information (i.e, corners and
edges) such as carpets, wooden and plastic floors, etc.
The number of spectral features to be used is also a

tradeoff. A minimum of three is required for the homogra-
phy calculation, but usually more than three features are
used to overdetermine the system and thus perform a more
robust estimation.

C. Projective Rectification

A monocular system such as the one described, having
its focal axis perpendicular to the navigation plane can be
used only for odometry measurements. Nevertheless an
equivalent system can be configured from a camera hav-
ing an oblique focal axis using a projective rectification of
the image thus generated. This has the advantage that
the same monocular device used for other tasks, such as
obstacle avoidance, environment acquisition and maping,
etc. can be used for the odometry measurements too.
In monocular system vehicles with the camera’s focal

axis oblique to the plane of navigation (as the working
platform in figure 1), change of pose of the robot system
can be described using the induced homography between
successive rectified images of the navigation plane Π. The
projective distortion introduced in the system can be cor-
rected in order to obtain an equivalent, non-oblique system,
as shown in figure 2, if we known the camera height h with
respect to the floor and the angle Φ between the focal axis
of the camera and the normal n to the navigation plane.

h
Φ
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Y M

ZM

ON
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Y N
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RNM , t

Π

n

Fig. 2. Proyective rectification

Let us assume, for the sake of simplicity, that axis Yc of
the CCS is in the plane formed by the focal axis and the
normal to the navigation plane Π. Following [9], let PM

be the coordinates in the CCS of a point on the navigation
plane, the coordinates of the same point seen from a virtual
camera with their focal axis normal to the plane will be
given by

PN =

(

RNM +
t · nT

h

)

PM (12)

where RNM is a rotation matrix and t is a translation
vector that represent the location and orientation of the
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perpendicular camera with respect to the oblique one, and

RNM =





1 0 0
0 cosΦ sinΦ
0 − sinΦ cosΦ



 t =





0
tNy
tNz



 (13)

Adding the condition that zN = 1 the coordinates tNx =
|t| cosΨ and tNy = |t| sinΨ of the translation vector can
be found trigonometrically, where Ψ is the angle between
t and n. By means of the law of cosines in the triangle
formed by |t|, h

cosΦ and zN = 1 we have

|t|2 =
h2

cosΦ
+ 1− 2h (14)

and by means of the law of sines in the same triangle

sinΨ =
h

|t|
tanΦ (15)

IfK is the camera calibration matrix, the coordinates (in
pixels) of points m1 and m2 on the original and rectified
images are related through

m2 = K

(

R+
t · nT

h

)

K−1m1 (16)

IV. Homography estimation

Now, the goal is to calculate the homography that links
the actual pose with the initial one, that is to say that for
a set of points captured at time K it is known HAK so that
we map the coordinates system (K) into the first one (A)

PA
i = HAKPK

i (17)

Points used for the calculation of the homography corre-
spond to the spectral features of images captured from the
floor. Displacement calculation using image registration is
performed on this set of images.

If the images captured from the camera in two succes-
sive samples are slightly displaced and rotated from each
other, meaning that sampling rate is high in relation with
the vehicle velocity, movement of image spectral features
can be modeled using pure translation. In this case, the
parameters describing the general movement of the vehicle
are obtained considering the whole set of individual dis-
placements of those features, as shown in figure 3. That is,
the transformation between each feature will be performed
considering only pure translation, and by setting a feature
arrange sparsely distributed in the whole image the set will
perform a complete planar transformation including trans-
lation and rotation.

Process begins registering the features of the first and
second captured images. In this way the two first sets
of point’s coordinates corresponding to each image frames
are obtained and subsequently the homography between
frames is computed. With each new image acquired the
homography is recalculated, thus relating the new image
frame with image frame zero. This yields the transforma-
tion of current pose to initial pose, saying (B) the current
frame and (A) the intial one we have PA

i = HABP
B
i .

ϕ

ϕ

Spectral

features

Fig. 3. Estimation of the Euclidian planar transformation using
PCM method to register features

When pose change overpasses a threshold value (e.g. 5
pixels for translation or 0.05 radians for rotation between
frames) the current image and its homography HAB are
stored as a process anchor value. From this point new
images are registered with image zero and with this an-
chor image, obtaining the two homographies between both
frames, that is HAC and HBC where (C) refers to the cur-
rent frame. Now two ways exists to port current pose (or
frame) to zero pose: one is direct HAC and the other is
composed HABHBC . They may differ from one another
due to errors in the registration process of noisy images.
From this two ways the best one in terms of registering er-
rors is chosen and stored. If the direct calculation (in this
case HAC) results with less error, the intermediate anchor
is discarded and the current image takes its place (in this
case (C) becomes (B)).

For each new frame the homography transformations be-
tween them and the two previous anchors are computed in
the some way. The numbers of anchors will grow until
the maximum is arrived. This is a system variable which
must be chosen in terms of precision and computational
cost. The number of anchors to be used is related to vehi-
cle maximum speed. In general a number between 5 and 8
has been found to be adequate.

When the system goes far from the origin, tha calculation
of the homography of actual pose with respect to pose zero
is made by composition and not by direct registration, be-
cause images are no more overlapped. As the vehicle goes
farther, new anchors are generated. When anchors number
reaches chosen value N the older is discarded to store a
new one, keeping the discarded anchor’s homography.

The process keeps on with the acquisition of new images
and new anchors. At any arbitrary time (K) we can com-
pose the homography between the current frame (K) and
the frame (A)

HAK = HABHBCHCD . . . HJK (18)
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V. Conclusion

The method presented allows odometry calculation us-
ing a monocular camera system. It can be used aiming the
camera directly to the floor or with an oblique focal axis.
The first configuration yields better resolution in movement
determination and the second allows the use of visual infor-
mation obtained for other tasks such as obstacle avoidance,
trajectory planning, maping, etc.

Spectral features have advantages over corner detection
in zones with low gradient values. Displacement calculation
using phase correlation lends itself well to be embedded in
logical devices as FPGAs, allowing the construction of a
stand alone visual odometric sensor with relative simplicity.

Tests performed on short trajectories (indoor paths of
approximately 5m long) have shown error values of about
1% of the length of a known trajectory. Tests on longer
paths have been not performed yet, but error values are
expected to be the same. Main cause of error is the integra-
tion process needed to obtain position information because
the system is a velocity measuring device. One of the inter-
esting possibilities arising from this work is fusion of visual
odometry with the information of a low-cost GPS receiver,
and/or with that of the optical encoders on the vehicle´s
wheels, for navigation in low structured environments.
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