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Robust Pose Estimation from a Planar Target
Gerald Schweighofer and Axel Pinz

Abstract

In theory, the pose of a calibrated camera can be uniquely determined from a minimum of four coplanar and
not collinear points. In practice, there are many applications of camera pose tracking from planar targets, and
there is also a number of recent pose estimation algorithms which perform this task in real-time, but all of these
algorithms suffer from pose ambiguities. This paper investigates the pose ambiguity for planar targets viewed by
a perspective camera. We proof that pose ambiguities - two distinct local minima of the according error function
- exist even for cases with wide angle lenses and close range targets. We give a comprehensive interpretation of
the two minima, and develop a new algorithm for a unique and robust solution to pose estimation from a planar
target.

Index Terms

camera pose ambiguity, pose tracking

I. INTRODUCTION

THERE are many applications of pose estimation, where 6 degrees of freedom of a camera’s pose
have to be calculated from known correspondences with known scene structure. This can be done

from a single image or from an image sequence. In photogrammetry this problem is known as space
resectioning and it is often solved offline by bundle adjustment techniques, achieving very high precision
and at the same time high robustness against outliers. In general, there are several ways to solve this
problem, as long as many points can be used, and when the pose can be calculated offline (e.g. taking
information from frames 
���� into account to calculate the pose for frame 
 ). Online pose tracking
requires to calculate the camera pose for each frame, in real-time. Often interest points are extracted
from a target, and the camera pose is calculated relative to the target’s pose in the scene. In theory, pose
can be calculated from four or more coplanar and not collinear points, if the intrinsic parameters of the
camera are known, while this remains a critical configuration for an uncalibrated camera, even if many
coplanar points are available [1]. In the Computer Vision literature, several approaches to pose estimation
are known. Most of them work for coplanar points [2], [3], some have been extended to use points and
lines [4], [5], and some work also for arbitrary 3D target point configurations [6]. Recent success has also
been reported for online structure and motion estimation [7], where many interest points are extracted,
frame-to-frame correspondence is rather easy, and no a priori reference to a scene coordinate system is
required (for early work in this direction see [8]).

Examples of vision-based tracking systems which are based on planar targets include ARToolkit ([9],
widely used for many augmented reality (AR) applications), Malik et al. ([10], they claim to be more
precise than ARToolkit due to an improved target design), and our own developments ([11], fusing inertial
and vision sensors to increase robustness). Kawano et al. [12] discuss a number of further planar markers
for AR, and present their own, coded planar target. Users of such systems observe that vision-based pose
is not very precise, which results in significant jitter, and not very robust suffering from pose jumps and
gross pose outliers.

We have performed a number of experiments comparing several pose algorithms and planar target
configurations. Even if we use a well calibrated camera and avoid known critical configurations, we
observe pose jumps, which should not occur.
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These pose ambiguities have also been discussed by Oberkampf et al. [13]. They give a straightforward
interpretation for the case of orthographic projection and they develop their POSIT algorithm, which uses
scaled orthographic projection at each iteration step. POSIT maintains two alternative solutions and finally
decides for the better one based on a distance measure � , which is calculated from reprojection errors in
the image space. However, this approach is only valid when the camera distance is very large compared to
depth in the scene, so that perspective projection can be approximated by scaled orthographic projection.

This paper tackles the general case of perspective projection. We proof that pose ambiguities exist also
for cases with wide angle lenses and close range targets. We give a comprehensive interpretation of these
ambiguities, and develop a new algorithm for a unique and robust solution to pose estimation from a
planar target.

II. POSE AMBIGUITY

We discuss here the camera pose estimation problem for a calibrated camera (with known interior
parameters) as the problem of finding the six exterior parameters of the camera: orientation ������������� ��!#"
and position t �%$ &�'(��&	)*��&�+�,.- between camera and scene coordinate system. Figure 1 shows on the left side
the center of projection /10 (camera center) and the image plane. On the right we see the model points243 � 265 in the plane 7 . /80 is also the origin of the camera coordinate system, and the origin of the model
coordinate system is the center of the model /19 (model center)1. The distance between /10 and /:9 is
labeled with t. By rotating the model around the y-axis for an angle � we obtain the model points
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Fig. 1. Pose Ambiguities with perspective projection.

We assume 
 model points p 3 in scene coordinates which are transformed to camera coordinates v
3

by

v
3#a � p 3 � t � (1)

where
a

denotes ‘directly proportional’, so v
3

are measured up to an unknown scale factor. We further
on refer to v

3
as points in camera coordinates and to bv 3 as their measurements in the image (also in camera

coordinates, but imprecise due to noise). A pose estimation algorithm has to find values for b� and b& that
minimize an error function. In this paper we use the object-space error function [2]�8c	de� b�f� bt " � gh 3.i � jjjjj kJlnm bv 3 bv o3bv o3 bv 3=p � b� p 3 � bt " jjjjj 
rq (2)

For our example in Fig. 1 we want to point out that for every chosen � there may exist a second, different
angle � which also leads to a local minimum of the error function �scCd . The existence of such a minimum
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Fig. 2. Error value tvu�w for different distances x x t x x .
depends on all parameters of (2). Figure 2 shows how the error function �sc	d changes depending on
different distances t between model2 center /:9 and camera center /80 . In this case � is just a rotation
about the y-axis, as shown in Fig. 1, with �y�{zJ|~} and zero noise ( bv 3 � v

3
). For all visualized curves

there is one absolute minimum at ����zJ| } where the error function �1c	d is zero. For � � t � ��������� qA� �U��� � we
see local minima of increasing significance (decreasing ��c	d ) at ��� m �L� q � } � m��J� q � } � m � � qA� } and

m � � q | } .
With increasing distance � � t � � between model and camera the effect of perspective projection decreases.
In the case � � t � ����� we would have orthographic projection with a second minimum of ��c	d���| at��� m zJ| } . For � � t � �~��� q �Lz there exists only one minimum of the error function ( �sc	d ��| at ����zJ| } ).
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Fig. 3. Error value tvu�w for different rotation angles � .

Figure 3 depicts the dependency of ��c	d on varying rotation angles � . For this plot � � t � �L��� . Again, we
assume a noise-free case and obtain ��c	d���| for each � . For ��� � | } �UzJ| } � � | } and �J| } we see a second
local minimum of ��c	d at ��� m ��z q | } � m �Lz q � } � m � � qA� } � m z � q � } and

m �J��qA� } . For ��� � ��� � } there exists no
second local minimum of ��c	d .

1For the purpose of this paper, we can assume that scene and model coordinate system coincide without loss of generality
2The chosen model consists of four points: ���6�¡ ¢���4£�¤A¥ , �§¦[�¨ ¢�ª©«�r£�¤A¥ , �­¬4�¨ E©[�®©¯�r£°¤Y¥ , �_±[�¡ ¢©[���4£�¤Y¥



Graz University of Technology - Technical Report, TR-EMT-2005-01
������� �	��� 
	�	�	���

(Submitted to IEEE[PAMI] 05/2005), Schweighofer and Pinz 4

III. ROBUST POSE ESTIMATION ALGORITHM

The previous section demonstrated, that there can exist two distinct local minima of ��c	d , even for the
noise-free case. From now on we discuss the case of real images, where in general v

3®²� bv 3 . One can
expect more occurrences of two local minima than for the noise-free situation, but ��c	d will be above zero
for both cases, the correct angle � , and the wrong one � . Our new algorithm is based on these major
observations:

1) There are sometimes two local minima, depending on the actual configuration ( b� , bt, p 3 and bv 3 ).
2) The correct solution to the pose estimation problem should have the lower error value ��c	d .
To develop the algorithm we first assume a known pose ( b� � , bt � ) which we get from any pose estimation

algorithm. As we know from section II there could be sometimes two local minima. So it may happen
that this pose estimation algorithm returns a wrong result. Experimental results in section IV show that
this happens in nearly

� |(³ of all cases for several common pose estimation algorithms.
We now show how to use a first guess of a pose � b� � � bt � " to estimate a second pose, which also minimizes

the error function �1c	d .
This is done by successively changing the general transformation (1) in a way that finally �«cCd only

depends on a rotation about the y-axis ��)J���´" and t. Subsequently we switch between presentations of
general equations ((3), (5) and (9)) and specific calculations ( ��' and ��+ ) based on the initial first pose� b� � � bt � " .

Assume model points p 3 which are measured in the image as bv 3 (see (1)) such thatbv 3#µ v
36a � p 3 � t

q
(3)

Without loss of generality3 we can multiply both sides of (3) with � o to get a transformed system� o bv 3#µ � o v 36a � o � p 3 �¶� o t � (4)

such that � o bt � �·$E|�|y� � bt � � � ,.- . The outcome of this transformation of the coordinate system is, that the
center of the model ( $¸|¨|ª|�, - ) will be projected into the image as $E|¹|º� � bt � � � , . Let»

v
3 ��� o bv 3 »

t � ��� o bt � »� � ��� o b� � q (5)

The pose (
»� � , »t � ) minimizes �8c	de� »�f� »t " � gh 3.i � jjjjj k lnm »

v
3 »
v o3»

v o3 »v 3 p � »� p 3 � »t " jjjjj 
 q (6)

Without loss of generality we introduce a rotation matrix
»��+ , such that

�1c	dV� »�f� »t " � gh3.i � jjjjjjj kLlnm »
v
3 »
v o3»

v o3 »v 3 p � »� »��+ »�½¼ �+¾ ¿	À ÁÂ p 3 � »t " jjjjjjj

 q

(7)

The rotation
»� ¼ �+ rotates the planar model p 3 only about the z-axis such that the rotated model

»
p 3 � »� ¼ �+ p 3

is also planar with Ã½��| . The rotation matrix
»� � »��+ can be decomposed into the product of three rotations»� � »��+Ä����+*� »! � "=��)J� »� � "°��'�� »� � "�� (8)

where � 3 ��Å#" describes a rotation of Å degrees about axis Æ . By selecting
»��+ such that

»� � ��| we obtain
another transformed system »

v
3Çµ ��+*�È!#"=��)J���´" »p 3 � »t (9)

3Note that this transformation does not affect the shape of the error function. Thus, a minimum of the transformed system will also be a
minimum of the original system.
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with the corresponding error function�1cCde�É!´����� »t " � gh3.i � jjjjj kJlnm »
v
3 »
v o3»

v o3 »v 3 p ����+*�È!#"=�1)(�È�Ê" »p 3 � »t " jjjjj 
 q (10)

Equation (9) and (10) are equal to (4) and (6) in the case of using the known pose � »� � � »t � " or Ë�����|�� »� � � »! � "Ì� »t ��Í .
From section II we know that there may be two minima of the error function ��c	d w.r.t. a rotation about

one axis (y-axis) depending on the parameters. In our transformed system (9) we have a rotation about
this axis (y-axis) and a rotation about the z-axis.

Let us discuss the effect of the Rotation ��+*�È!#" . We know from our normalization step (5) that
»
t � �$E|¨|º� � bt � � � , - . In this case we can rewrite (9) as»

v
3#µ ��+*�È!#"e����)L���´" »p 3 � »t � "�� (11)

because ��+*�È!#" »t � � »
t � . Thus the rotation �s+*�È!#" becomes a rotation just around the optical axis of the

camera. This rotation leaves the geometric relation between image plane and model plane invariant and
will just affect image coordinates. Thus, all our observations related to Fig. 1 are valid and we can just
search for local minima of ��c	d with respect to � .

We thus propose the following “Robust Pose Estimation Algorithm for Planar Targets”:
1) Estimate a first pose b2 � �%� b� � � bt � " by applying any existing iterative pose estimation algorithm. In

our experiments we used the iterative algorithm proposed by [2]. b2 � is one local minimum of ��c	d .
Our goal is to analytically derive an estimate of the second local minimum, if such a minimum
exists.

2) Transform the coordinate system according to (5) to get
»2 � �%� »� � � »t � " .

3) Estimate
»��+ as described in (7) to (9) to obtain the transformed system and the parameters of the

first pose (
»! � and

»� � ).
4) Fix !Î� »! � , and estimate all local minima of (10) for the parameters � and

»
t. For details see (III-A).

5) Undo the transformations of step 1 and 2 for all local minima to obtain poses b2r3 .
6) Use all poses b243 as a start value for the iterative pose estimation algorithm [2] to get final poses2sÏ3 .
7) Decide the final and correct pose, which has the lowest error �sc	d .

A. Estimation of the local minima
We discuss here how to estimate the local minima of (10) for given

»
p 3 , »v 3 and ��+*�É!Ç" . To simplify the

equations we set »ÐÑ3 � »
v
3 »
v o3»

v o3 »v 3
We can solve in (10) for the optimal translation

»
t cÓÒ o w.r.t. to the minimization of ��cCd by derivating (10)

such that [2]Ô �8c	dÔ »
t

� |¯Õ (12)»
t cÓÒ o ���´" � �
×ÖØ lnm �
 h 5 »ÐÙ5UÚÛ ¼ � h 5 Ë »Ð~5 m�l Í ��+*�È!#"=�1)J�È�´" »p5 ��Ü h 5 Ë »ÐÙ5 m�l Í ��+*�É!Ç"°��)L���´" »p5 �

where Ü is a constant and depends only on measured image positions
»
v
3
.

By plugging
»
t cÝÒ o ���«" into (10) we get an error function which only depends on � (the rotation about the

y-axis): �8c	d_�È�´" � gh 3.i �4Þ � lnm »ÐÑ3 "V����+*�É!#"=��)J���´" »p 3 �ßÜ gh5=i � � »Ð~5 m�l "=��+*�É!#"=��)L���´" »p5 " Þ 
 (13)
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Simplifying ��)J���´" , by substituting ( � o ��àUá�â �
Cã ), we obtain

�1)J�È�´"��åäæçéèeêLë ���´" | ë=ì â[�È�´"| � |m ë�ì â[���´"í| èVêJë �È�Ê"
î¸ïðòñ �1)J�È� o "�� ��ó�ß� o 
 äæç �

m � o 
 | ��� o| �ó�ß� o 
 |m ��� o | � m � o 

î¸ïð (14)

By plugging this into (13) we get a function ��c	dV��� o " which now only depends on � o . To get all extremal
points of this function we need to solve Ô �8c	d_�È� o "Ô � o ��|��
which is a polynomial of degree four and can be easily solved. In general, we will obtain two maxima
and two minima. The two minima are selected as those extrema with ôÌõCö u�w �Yã�÷Ó�ô õ ã�÷ ø | .

IV. EXPERIMENTAL RESULTS

To test the proposed algorithm we performed a huge amount of experiments. The setup was as follows:
1) For each test we generated a random model consisting of 10 points ù 3 �í$ ú 3:û*3 Ã 3 , o in the rangeú 3 �ü$ m �¡�e, , û*3 �ý$ m �¡�e, and Ã 3 ��| to be planar.
2) For each test we generated a random rotation � of the pose.
3) The translation vector t of the pose was chosen such that the measured image points v

3
were located

in the image at a random position and with a maximum size of the Feret box of ��|J| 2 Æ�úvþ­ÿ�� 4.
4) To each image point v

3
Gaussian noise was added to get bv 3 .

We repeated this procedure for 13 different noise levels reaching from zero to 6 pixels. For each noise
level we generated 1000 different models and poses. In Fig. 4 we see the result of the experiment.
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Fig. 4. Probability of choosing the correct Pose (Solid line: Our algorithm).

The solid line in Fig. 4 shows the result of our algorithm, which has in the noise-free case (Gaussian
noise = | 2 Æ�úvþ­ÿ�� ) a probability of 100 % to find the correct pose. With increasing noise the probability
decreases down to 83.7 % for z 2 Æ�úvþ­ÿ�� Gaussian noise. Results for existing common iterative pose
estimation algorithms ([2], [6]) are also given. Because there are most of the time two local minima of
the error function, the probability of finding the correct solution with these algorithms is just above 50 %.
The algorithm of Ansar and Daniilidis [4] starts at 100 % for zero noise, because this algorithm calculates
a direct solution, but its performance also decreases significantly with increasing noise level.

4Interior parameters: ���r�����Ç���=£�£ , �
	 �®¬�¦=£ and ��	 ��¦�±�£ Image Size: 
=±�£���±��=£
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Fig. 5. Distance to the true minima of the second pose.

In step 6 of our proposed algorithm we used all poses b2r3 as start values for the iterative algorithm
proposed by [2]. In Fig. 5 we show the distance between the rotations of the pose b243 and the refined pose2 Ï3 . The plot shows for all different noise levels the mean and the standard deviation. We see that the
mean error is always below three degrees and increasing with increasing noise level.
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Fig. 6. Probability of having one solution vs. angle � (Dashed line: noise-free case; Solid line: ���������#��¦������
����� )
From section II we know that the number of the minima of the error function depends on the rotation

of the model plane. To visualize this, Fig. 6 plots the probability of having one minimum of the error
function �1c	d against the angle between the normal of the model plane and t (for a better understanding this
angle is visualized in Fig. 1 as  ). The solid line represents the probability of having only one minimum
for the noise-free case. The dashed line shows the probability of having only one minimum for the case
of 2 pixels Gaussian noise. If there is not one minimum there are two minima. We see, that if the image
plane is nearly parallel to the object plane (angle lower than 15 degrees) there is only one solution for
the pose. If the angle  is above 20 degrees there are almost always two solutions.

Figure 7 compares the probabilities of choosing the correct solution for our algorithm (solid line) with
other common pose estimation algorithms ([2], [4], [6]) plotted against the angle  . Here we used only
tests where the Gaussian noise was � 2 Æ�úvþ­ÿ!� . As we know already from Fig. 6 there is only one solution
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Fig. 7. Probability of correct Pose vs. angle � for �"���#���#�®¦$���%�&�'�(� (Solid line: our algorithm)

in the case of small  , so the probability of choosing the correct solution is one for all algorithms. In
cases where two solutions occur, the performance of other algorithms drops down to probabilities as low
as 50 % to find the correct solution. Our algorithm has a probability of above 95 % to estimate the correct
solution for all angles  except in the range from 10 to 20 degrees. This effect is caused by noise, that
influences the results in this range of transition from one to two minima (see overlapping area of solid
and dashed lines in Fig. 6).

V. CONCLUSION

Except for the work by Oberkampf et al. [13], ambiguities in pose estimation have been neglected in
the literature. We have presented a thorough analysis and could proof, that in general there exist two local
minima of the according error function. These two minima are the reason why pose jumps are observed
in many pose tracking applications. Based on these findings, we presented a new “Robust Pose Estimation
Algorithm for Planar Targets” which takes the two minima into account to give a robust pose. To our
knowledge and experimental evidence this is the first algorithm which is robust against pose jumps in
real applications using planar targets.
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