Guillermo Steiner

Centro de Investigación en Informática para la Ingeniería Universidad Tecnológica Nacional, F.R.C.

http://ciii.frc.utn.edu.ar Córdoba, Argentina

Noviembre 2013

Procedimiento para detectar partes interesantes de una imagen

Bordes

Puntos que están en la frontera entre dos regiones, se definen generalmente como puntos con gran gradiente.

Esquina o Puntos de interés

Puntos de la imagen con estructura de dos dimensiones basados en principio por un simple detector de borde y luego en la curvatura del gradiente.

Blobs

Procedimiento para detectar partes interesantes de una imagen

Bordes

Puntos que están en la frontera entre dos regiones, se definen generalmente como puntos con gran gradiente.

Esquina o Puntos de interés

Puntos de la imagen con estructura de dos dimensiones basados en principio por un simple detector de borde y luego en la curvatura del gradiente.

Blobs

Procedimiento para detectar partes interesantes de una imagen

Bordes

Puntos que están en la frontera entre dos regiones, se definen generalmente como puntos con gran gradiente.

Esquina o Puntos de interés

Puntos de la imagen con estructura de dos dimensiones basados en principio por un simple detector de borde y luego en la curvatura del gradiente.

Blobs

Procedimiento para detectar partes interesantes de una imagen

Bordes

Puntos que están en la frontera entre dos regiones, se definen generalmente como puntos con gran gradiente.

Esquina o Puntos de interés

Puntos de la imagen con estructura de dos dimensiones basados en principio por un simple detector de borde y luego en la curvatura del gradiente.

Blobs

Se basa en identificar puntos en una imagen cuyo brillo cambia abruptamente (discontinuidad en el brillo)

Captura Eventos o cambios en las propiedades de un imagen como ser:

- Discontinuidades en la profundidad de un objeto
- Cambios de orientación de sus superficies.
- Cambios de material o textura.

La existencia de un borde implica la fluctuación en el brillo, esta situación introduce el concepto de derivada (primera y segunda).

Se basa en identificar puntos en una imagen cuyo brillo cambia abruptamente (discontinuidad en el brillo)

Captura Eventos o cambios en las propiedades de un imagen como ser:

- Discontinuidades en la profundidad de un objeto.
- Cambios de orientación de sus superficies.
- Cambios de material o textura.

La existencia de un borde implica la fluctuación en el brillo, esta situación introduce el concepto de derivada (primera y segunda).

Se basa en identificar puntos en una imagen cuyo brillo cambia abruptamente (discontinuidad en el brillo)

Captura Eventos o cambios en las propiedades de un imagen como ser:

- Discontinuidades en la profundidad de un objeto.
- Cambios de orientación de sus superficies.
- Cambios de material o textura.

La existencia de un borde implica la fluctuación en el brillo, esta situación introduce el concepto de derivada (primera y segunda).

Qué se busca:

- Baja respuesta a regiones uniformes.
- Isotrópico, independiente a la orientación del borde.
- Baja detección de falsos positivos.
- Baja pérdida de bordes.
- Buena detección.
- Respuesta única.

- Detectores de Primera Derivada.
 - Diferencias
 - Roberts
 - Prewitt
 - Sobel
- Detectores de Segunda Derivada.
 - Laplaciano de Gaussiano

- Detectores de Primera Derivada.
 - Diferencias
 - Roberts
 - Prewitt
 - Sobel
- Detectores de Segunda Derivada.
 - Laplaciano de Gaussiano

5 / 49

Detectores de Primera Derivada

$$G[f(x,y)] = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} f(x,y) \\ \frac{\partial}{\partial y} f(x,y) \end{bmatrix}$$
$$\|G\|_{L2} = \sqrt{G_x^2 + G_y^2}$$
$$\|G\|_{L1} = G_x + G_y$$
$$angG = \tan^{-1} \left(\frac{G_y}{G_x}\right)$$

Discretizado

$$G_x = f(x+1,y) - f(x,y)$$

 $G_y = f(x,y+1) - f(x,y)$

◆ロ > ← 個 > ← 速 > ← 速 > ・ 重 ・ の < ○・</p>

Detectores de Primera Derivada

Máscara para cálculo de 1era Derivada a)Diferencias b)Roberts c)Prewitt.

イロト イラト イラト ま めなべ

Detección de Borde

$$I' = D(I)$$

Detección de Borde con Ruido

$$I' = D(I)$$

$$F(x) = \frac{1}{\sqrt{2 \prod \sigma}} e^{-\frac{x^2}{2\sigma^2}}$$

Figura: Función gaussiana de media 0 y $\sigma=1$

4 □ ト 4 同 ト 4 豆 ト 4 豆 ト 9 Q (や)

G.Steiner (CIII, UTN-FRC)

Convolución entre un kernel Gaussiano y la imagen

$$I' = D(F * I)$$

Resultado

Derivar primero la gaussiana

$$F' = D(F)$$

Resultado

$$I' = D(F) * I$$

Filtro de Sobel

a)
$$M_{G_x} = egin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$M_{G_y} = egin{array}{c|ccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \\ \hline \end{array}$$

$$M_{G_y} = egin{array}{c|ccc} 3 & 10 & 3 \\ \hline 0 & 0 & 0 \\ \hline -3 & -10 & -3 \\ \hline \end{array}$$

Figura: a) Sobel b)Scharr

Detector de segunda derivada - Laplaciano de Gaussiano

$$I'' = \triangle I = \nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

G.Steiner (CIII, UTN-FRC)

Convolución entre un kernel Gaussiano y la imagen

$$I'' = \triangle(F * I)$$

Resultado

Derivar dos veces primero la gaussiana

$$F'' = \triangle(F)$$

Resultado de aplicar el Laplaciano del Gaussiano a la imagen

$$I'' = \triangle(F) * I$$

G.Steiner (CIII, UTN-FRC)

Aproximaciones de Laplacianas de gaussiana

$$M_L = egin{array}{c|cccc} 0 & 1 & 0 \\ \hline 1 & -4 & 1 \\ \hline 0 & 1 & 0 \\ \hline \end{array}$$

$$M_L = egin{array}{c|cccc} -1 & 2 & -1 \ & 2 & -4 & 2 \ & -1 & 2 & -1 \ \end{array}$$

- Calcula las derivadas parciales por Sobel, Prewitt u otro método y luego computa el módulo y ángulo del gradiente.
- Implementa un método de adelgazamiento del borde por el método de supresión no máxima.
- Detecta puntos por medio de un umbral con histéresis.

- Calcula las derivadas parciales por Sobel, Prewitt u otro método y luego computa el módulo y ángulo del gradiente.
- Implementa un método de adelgazamiento del borde por el método de supresión no máxima.
- Detecta puntos por medio de un umbral con histéresis.

- Calcula las derivadas parciales por Sobel, Prewitt u otro método y luego computa el módulo y ángulo del gradiente.
- Implementa un método de adelgazamiento del borde por el método de supresión no máxima.
- Detecta puntos por medio de un umbral con histéresis.

- Calcula las derivadas parciales por Sobel, Prewitt u otro método y luego computa el módulo y ángulo del gradiente.
- Implementa un método de adelgazamiento del borde por el método de supresión no máxima.
- Detecta puntos por medio de un umbral con histéresis.

Detectores de Puntos de Interés / Esquinas

- Detector de Moravec.
- Harris & Stephens / Plessey / Shi-Tomasi.
- Detector de Trajkovic.
- Detector FAST (Features from Accelerated Segment Test).

23 / 49

Detector de Moravec

Punto de interés - regiones en la imágenes que pueden ser localizadas nuevamente en imágenes sucesivas Auto Correlación

$$c(x, y, \triangle x, \triangle y) = \sum_{i=0}^{n} [I(x + a_i, y + b_i) - I(x + a_i + \triangle x, y + b_i + \triangle y)]^2$$

Desventaja
 No es isotrópico.

Modificaciones

- No es isotropico.
- Ventana circularSuma Ponderada

	p'_0	p_1'	p_2'
p_0	$p_3' \\ p_1'$	$p_4' \\ p_2'$	p_5'
p_3	$p_6' \\ p_4$	$p_5' \\ p_5'$	p_8'
p_6	p_7	p_8	

Detector de Moravec

Punto de interés - regiones en la imágenes que pueden ser localizadas nuevamente en imágenes sucesivas Auto Correlación

$$c(x, y, \triangle x, \triangle y) = \sum_{i=0}^{n} [I(x + a_i, y + b_i) - I(x + a_i + \triangle x, y + b_i + \triangle y)]^2$$

- Desventaja
 - No es isotrópico.
- Modificaciones

Ventana circular.Suma Ponderada

	p'_0	p'_1	p_2'
p_0	$p_3' \\ p_1'$	$p_4' \\ p_2$	p_5'
p_3	p_4'	$p_5' \\ p_5'$	p_8'
p_6	p_7	p_8	

Detector de Moravec

Punto de interés - regiones en la imágenes que pueden ser localizadas nuevamente en imágenes sucesivas Auto Correlación

$$c(x, y, \triangle x, \triangle y) = \sum_{i=0}^{n} [I(x + a_i, y + b_i) - I(x + a_i + \triangle x, y + b_i + \triangle y)]^2$$

- Desventaja
 - No es isotrópico.
- Modificaciones
 - Ventana circular.
 - Suma Ponderada.

	p'_0	p'_1	p_2'
p_0	$p_3' \\ p_1'$	$p_4' \\ p_2'$	p_5'
p_3	$p_6' \\ p_4$	$egin{array}{c} p_7' \ p_5' \end{array}$	p_8'
p_6	p_7	p_8	

Harris & Stephens / Plessey / Shi-Tomasi

Elimina el problema de discretización de direcciones

$$c(x,y) = \sum_{i=0}^{n} w_{i} [I(x_{i}, y_{i}) - I(x_{i} + \triangle x, y_{i} + \triangle y)]^{2}$$

Aplicamos Taylor al píxel desplazado

$$I(x_i + \triangle x, y_i + \triangle y) \approx I(x_i, y_i) + \begin{bmatrix} I_x(x_i, y_i) & I_y(x_i, y_i) \end{bmatrix} \begin{bmatrix} \triangle x \\ \triangle y \end{bmatrix} + \varphi^2(y_i)$$

Reemplazamos

$$c(x,y) = \sum_{i=0}^{n} w_i \left[I(x_i, y_i) - \left(I(x_i, y_i) + \begin{bmatrix} I_x(x_i, y_i) & I_y(x_i, y_i) \end{bmatrix} \begin{bmatrix} \triangle x \\ \triangle y \end{bmatrix} \right) \right]^2$$

$$= \sum_{i=0}^{n} w_{i} \begin{bmatrix} \left[\Delta x \quad \Delta y \right] \begin{bmatrix} (I_{x}(x_{i}, y_{i}))^{2} & I_{x}(x_{i}, y_{i})I_{y}(x_{i}, y_{i}) \\ I_{x}(x_{i}, y_{i})I_{y}(x_{i}, y_{i}) & (I_{y}(x_{i}, y_{i}))^{2} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \end{bmatrix}$$

Elimina el problema de discretización de direcciones

$$c(x,y) = \sum_{i=0}^{n} w_{i} [I(x_{i}, y_{i}) - I(x_{i} + \triangle x, y_{i} + \triangle y)]^{2}$$

Aplicamos Taylor al píxel desplazado

$$I(x_i + \triangle x, y_i + \triangle y) \approx I(x_i, y_i) + \begin{bmatrix} I_x(x_i, y_i) & I_y(x_i, y_i) \end{bmatrix} \begin{bmatrix} \triangle x \\ \triangle y \end{bmatrix} + \varphi^2()$$

Reemplazamos

$$c(x,y) = \sum_{i=0}^{n} w_i \left[I(x_i, y_i) - \left(I(x_i, y_i) + \begin{bmatrix} I_x(x_i, y_i) & I_y(x_i, y_i) \end{bmatrix} \begin{bmatrix} \triangle x \\ \triangle y \end{bmatrix} \right) \right]^2$$

$$= \sum_{i=0}^{n} w_{i} \begin{bmatrix} \left[\Delta x \quad \Delta y \right] \begin{bmatrix} (I_{x}(x_{i}, y_{i}))^{2} & I_{x}(x_{i}, y_{i})I_{y}(x_{i}, y_{i}) \\ I_{x}(x_{i}, y_{i})I_{y}(x_{i}, y_{i}) & (I_{y}(x_{i}, y_{i}))^{2} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \end{bmatrix}$$

G.Steiner (CIII, UTN-FRC)

Elimina el problema de discretización de direcciones

$$c(x,y) = \sum_{i=0}^{n} w_{i} [I(x_{i}, y_{i}) - I(x_{i} + \triangle x, y_{i} + \triangle y)]^{2}$$

Aplicamos Taylor al píxel desplazado

$$I(x_i + \triangle x, y_i + \triangle y) \approx I(x_i, y_i) + \begin{bmatrix} I_x(x_i, y_i) & I_y(x_i, y_i) \end{bmatrix} \begin{bmatrix} \triangle x \\ \triangle y \end{bmatrix} + \varphi^2()$$

Reemplazamos

$$c(x,y) = \sum_{i=0}^{n} w_i \left[I(x_i, y_i) - \left(I(x_i, y_i) + \begin{bmatrix} I_x(x_i, y_i) & I_y(x_i, y_i) \end{bmatrix} \begin{bmatrix} \triangle x \\ \triangle y \end{bmatrix} \right) \right]^2$$

$$= \sum_{i=0}^{n} w_{i} \left[\begin{bmatrix} \triangle x & \triangle y \end{bmatrix} \begin{bmatrix} (I_{x}(x_{i}, y_{i}))^{2} & I_{x}(x_{i}, y_{i})I_{y}(x_{i}, y_{i}) \\ I_{x}(x_{i}, y_{i})I_{y}(x_{i}, y_{i}) & (I_{y}(x_{i}, y_{i}))^{2} \end{bmatrix} \begin{bmatrix} \triangle x \\ \triangle y \end{bmatrix} \right]$$

◆ロト ◆昼 ト ◆ 豊 ト ◆ 豊 ・ 夕 Q (で)

G.Steiner (CIII, UTN-FRC) Detectores de Características

$$c(x,y) = \begin{bmatrix} \triangle x & \triangle y \end{bmatrix} \begin{bmatrix} \sum_{i} w_{i} (I_{x}(x_{i}, y_{i}))^{2} & \sum_{i} w_{i} I_{x}(x_{i}, y_{i}) I_{y}(x_{i}, y_{i}) \\ \sum_{i} w_{i} I_{x}(x_{i}, y_{i}) I_{y}(x_{i}, y_{i}) & \sum_{i} w_{i} (I_{y}(x_{i}, y_{i}))^{2} \end{bmatrix} \begin{bmatrix} \triangle x \\ \triangle y \end{bmatrix}$$
$$= \begin{bmatrix} \triangle x & \triangle y \end{bmatrix} C(x,y) \begin{bmatrix} \triangle x \\ \triangle y \end{bmatrix}$$

donde

$$C(x,y) = \begin{bmatrix} \sum_{i} w_{i} (I_{x}(x_{i}, y_{i}))^{2} & \sum_{i} w_{i} I_{x}(x_{i}, y_{i}) I_{y}(x_{i}, y_{i}) \\ \sum_{i} w_{i} (I_{x}(x_{i}, y_{i}) I_{y}(x_{i}, y_{i}) & \sum_{i} w_{i} (I_{y}(x_{i}, y_{i}))^{2} \end{bmatrix}$$

$$C(x,y) = \begin{bmatrix} \langle I_{x}^{2} \rangle & \langle I_{x} I_{y} \rangle \\ \langle I_{x} I_{y} \rangle & \langle I_{y}^{2} \rangle \end{bmatrix}$$

Si se diagonaliza, podemos sacar sus autovalores.

$$RCR^{-1} = R \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R^{-1}$$

representando una elipse con semiejes

$$\frac{1}{\sqrt{\lambda_1}}$$
 y $\frac{1}{\sqrt{\lambda_2}}$

y al ángulo por su autovector

$$\alpha = \arctan\left(\frac{y_1}{x_1}\right)$$

Figura: representación de los autovalores en una elipse

Características de la imagen según los autovalores.

- a) $\lambda_1 \gg \lambda_2$ o $\lambda_2 \gg \lambda_1$, Borde.
- b) $\lambda_1 \simeq 0$ y $\lambda_2 \simeq 0$, Superficie homogénea.
- c) $\lambda_1 > 0$ y $\lambda_2 > 0$, Esquina o punto de interés.

Respuesta de la segunda derivada en diferentes puntos de la imagen.

- Propuesta de Harris & Stephens / Plessey.
 - El Determinante (un determinante alto implica ambos autovalores altos).
 - La Traza (orden de magnitud del autovalor mas grande).

$$Harris(x, y) = \det(C) - k(\operatorname{traza}(C)^2)$$

donde

$$\det(C) = \lambda_1 \lambda_2 = I_x^2 I_y^2 - I_{xy}^2$$
$$\operatorname{traza}(C) = \lambda_1 + \lambda_2 = I_x^2 + I_y^2$$

• Propuesta Shi-Tomasi.

$$ST(x,y) = \min(\lambda_1, \lambda_2)$$

Método sencillo y rápido para la detección de puntos de interés

$$T(x,y) = \min((P1_n - C)^2 + (P2_n - C)^2)$$

Respuesta según la posición del píxel central

- Borde, La menor respuesta será la recta paralela a la dirección del borde.
- Uniforme, Cualquier dirección dará un bajo resultado por encontrar puntos similares.
- Esquina, Cualquier recta tendrá al menos uno de los puntos de corte en un píxel que difiere del central.

Figura: Círculo del detector de Trajkovic

- 4 日 5 4 周 5 4 3 5 4 3 5

Aproximación interpíxel en ventana de 3x3

Figura: Círculo del detector de Trajkovic

$$T(x,y) = \min((B-C)^2 + (B'-C)^2, (A-C)^2 + (A'-C)^2)$$

< ロ > < 部 > < 差 > < 差 > を き を の へ で 。

Aproximación interpíxel en ventana de 3x3

Figura: Círculo del detector de Trajkovic

Si tomamos dos puntos (P P') y (Q Q') podemos calcular sus respuestas

$$r_1(x) = (P_x - C)^2 + (P'_x - C)^2, r_2(x) = (Q_x - C)^2 + (Q'_x - C)^2$$

$$T(x, y)_{\text{interpixel}} = \min_{x \in (0, 1)} (r_1(x), r_2(x))$$

$$P(x) = (1 - x)A + xB \qquad P'(x) = (1 - x)A' + xB'$$

$$Q(x) = (1 - x)A' + xB \qquad Q'(x) = (1 - x)A + xB'$$

◆ロト ◆昼 ト ◆ 差 ト → 差 → からで

Aproximación interpíxel en ventana de 3x3

Figura: Círculo del detector de Trajkovic

$$r_2(x) = ((1-x)A' + xB - C)^2 + ((1-x)A + xB' - C)^2 = q_1 + 2q_2x + q_3x^2$$

$$r_1(x) = p_1 + 2p_2x + p_3x^2$$

$$p_1 = q_1 = r_A$$

$$p_2 = F(B, A', A, C, B'), q_2 = F(B, A, A', C, B')$$

$$p_3 = r_B - r_A - 2p_2, q_3 = r_B - r_A - 2q_2$$

◆ロト ◆昼 ト ◆ 壹 ト ○ 夏 ・ 夕 Q (^)

Aproximación interpíxel en ventana de 3x3

Figura: Círculo del detector de Trajkovic

Cálculo del mínimo

$$T(x,y)_{\text{interpixel}} = \begin{cases} r_A - \frac{m_2^2}{m_3} & \text{si } (m_2 < 0) \text{ y } (m_2 + m_3) > 0 \\ T(x,y) & \text{sino} \end{cases}$$

donde

$$m_2 = \min(p_2, q_2)$$
 y $m_3 = r_B - r_A - 2m_2$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣りで

Detección de Puntos Característicos basado en Arboles de Decisión Método Convencional

 Se busca 12 píxeles contiguos que cumplan con

$$I_{p \to x} < I_p - t \text{ o } I_{p \to x} > I_p + t$$

- Permite un descarte rápido si hay menos de 3 píxeles del conjunto (1,5,9 y 13) que no cumplen con lo anterior.
- El problema supone una estructura que respeta los 12 píxeles contiguos.

Arboles de Decisión

• Por cada posición x se calcula para cada punto $I_{p \to x}$

$$S_{p \rightarrow x} = \left\{ \begin{array}{lll} d, & I_{p \rightarrow x} & \leq & I_p - t & (\text{oscuro}) \\ s, & I_p - t & < & I_{p \rightarrow x} & < & I_p + t & (\text{similar}) \\ b, & I_p + t & \leq & I_{p \rightarrow x} & & (\text{brilloso}) \end{array} \right.$$

y se dividen en tres subconjuntos P_d , P_s , P_b

- Se construye un conjunto K_p de tipo booleano, que contendrá por cada p true si es punto de interés y false si no lo es.
- ullet Se construye el árbol ID3 partiendo del x con la mayor Entropía en K

$$H(Q) = (c + \overline{c}) \log_2(c + \overline{c}) - c \log_2 c - \overline{c} \log_2 \overline{c}$$

$$\begin{array}{ll} c = & |\{q \mid K_q \text{es true}\}| & \text{(número de corners)} \\ \overline{c} = & |\{q \mid K_q \text{es false}\}| & \text{(número de no corners)} \end{array}$$

◆ロト ◆部 → ◆意 → ◆意 → ○ ○ ○

Cálculo del Árbol

• Bucle recursivo comenzando por el x de mayor entropía.

$$H(P) - H(P_{d \to x}) - H(P_{s \to x}) - H(P_{b \to x})$$

- Se repite la operación pero para cada uno de los subconjuntos $P_{d \to x}, P_{s \to x}, P_{b \to x}$, tendremos para $P_{d \to x} = P'_d \cup P'_s \cup P'_b$
- El procedimiento concluye cuando la entropía del subconjunto sea nula, indicando que todos los elementos del mismo son esquinas o no lo son, pudiendo etiquetar finalmente.

Función de Respuesta

$$V = \max\left(\sum_{x \in S_b} |I_{p \to x} - I_p| - t, \sum_{x \in S_d} |I_{p \to x} - I_p| - t\right)$$

donde

$$S_b = \{x \mid I_{p \to x} \ge I_p + t\} \text{ (brillosos)}$$

$$S_d = \{x \mid I_{p \to x} \le I_p - t\} \text{ (oscuros)}$$

FIN !!! ¿ Preguntas ?