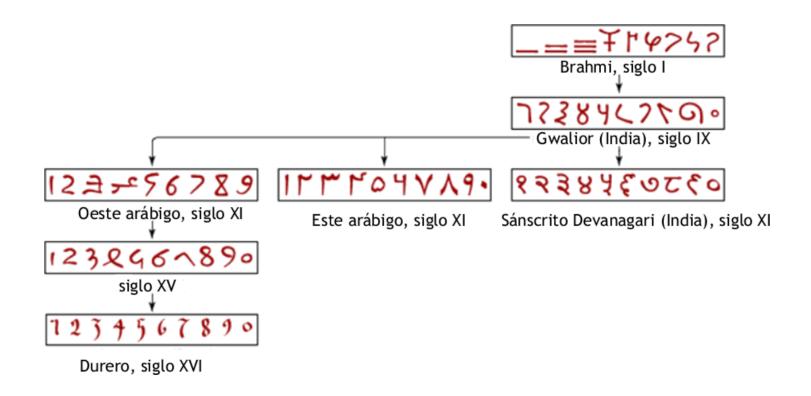
Informática I

Claudio Paz


claudiojpaz@gmail.com

Abril 2019

Unidad 2 Sistemas de numeración

Sistema decimal: Evolución histórica

Sistema decimal: Evolución histórica

1024

$$1024 = 1 \times 1000 + 0 \times 100 + 2 \times 10 + 4 \times 1$$

1024

$$1024 = 1 \times 10^3 + 0 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$$

Sistemas de numeración

Sistemas de numeración

No Posicionales

Sistemas de numeración

- No Posicionales
- Posicionales

Considérese un sistema de numeración posicional de base b, siendo b números naturales que cumplan con b>1, entonces cualquier número natural N puede expresarse de manera única en esa base decimal como

$$N=a_nb^n+a_{n-1}b^{n-1}+\cdots+a_2b^2+a_1b^1+a_0b^0$$

siendo $a_n,\ a_{n-1},\ \dots,\ a_2,\ a_1,\ a_0$ alguno de los símbolos que forman la base del sistema y n+1 la cantidad de cifras del número N.

También se puede escribir de forma compacta como

$$N=\sum_{i=0}^n a_i b^i$$

$$base = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

 $b = 10$

$$base = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

 $b = 10$

$$N=\sum_{i=0}^n a_i 10^i$$

$$base = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

 $b = 10$

$$N=\sum_{i=0}^n a_i 10^i$$

$$512 = 5 \times 10^2 + 1 \times 10^1 + 2 \times 10^0$$

$$base = \{0, \, 1\}$$

 $b=2$

$$base=\{0,\,1\} \ b=2$$

$$N = \sum_{i=0}^n a_i 2^i$$

$$base = \{0, 1\}$$

 $b = 2$

$$N=\sum_{i=0}^n a_i 2^i$$

$$egin{aligned} 101_{(2)} &
ightarrow 1 imes 2^2 + 0 imes 2^1 + 1 imes 2^0 = 5_{(10)} \ 1010_{(2)} &
ightarrow 1 imes 2^3 + 0 imes 2^2 + 1 imes 2^1 + 0 imes 2^0 = 10_{(10)} \ 1101_{(2)} &
ightarrow 1 imes 2^3 + 1 imes 2^2 + 0 imes 2^1 + 1 imes 2^0 = 13_{(10)} \end{aligned}$$

$$base = \{0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9, \ A, \ B, \ C, \ D, \ E, \ F\}$$

 $b = 16$

$$base = \{0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9, \ A, \ B, \ C, \ D, \ E, \ F\}$$
 $b = 16$

$$N=\sum_{i=0}^n a_i 16^i$$

$$base = \{0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9, \ A, \ B, \ C, \ D, \ E, \ F\}$$

 $b = 16$

$$N=\sum_{i=0}^n a_i 16^i$$

$$10_{(16)}
ightarrow 1 imes 16^1 + 0 imes 16^0 = 16_{(10)}$$

$$base = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

 $b = 8$

$$base = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

 $b = 8$

$$N=\sum_{i=0}^n a_i 8^i$$

$$base = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

 $b = 8$

$$N=\sum_{i=0}^n a_i 8^i$$

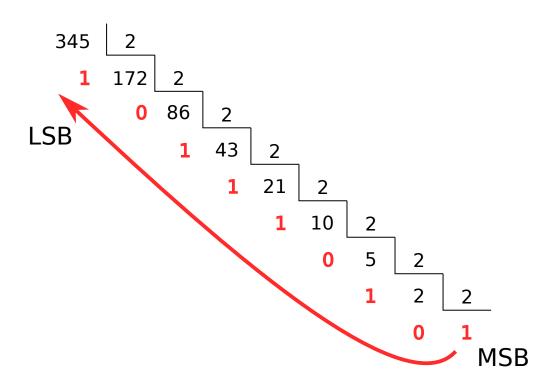
$$egin{aligned} 10_{(8)} & o 1 imes 8^1 + 0 imes 8^0 = 8_{(10)} \ 130_{(8)} & o 1 imes 8^2 + 3 imes 8^1 + 0 imes 8^0 = 88_{(10)} \end{aligned}$$

 $1000_{(10)} =$

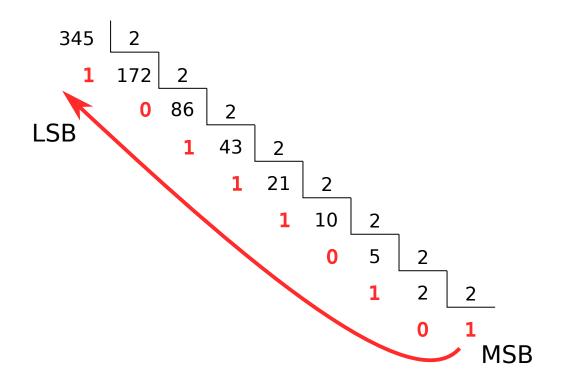
 $1000_{(2)} =$ $1000_{(8)} =$ $1000_{(16)} =$

$$1000_{(10)} = 1000$$

$$1000_{(2)} = 8$$


$$1000_{(8)} = 512$$

$$1000_{(16)} = 4096$$


Números enteros y positivos

Sistema binario	Sistema decimal	Sistema hexadecimal	Sistema octal
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	8	10
1001	9	9	11
1010	10	А	12
1011	11	В	13
1100	12	С	14
1101	13	D	15
1110	14	Е	16
1111	15	F	17

Conversión de decimal a binario

Conversión de decimal a binario

$$345_{(10)} = 101011101_{(2)}$$

Pasaje directo

Pasaje directo

Debido a que las bases del sistema binario, octal y hexadecimal son potencias de 2, el pasaje entre números de esots sistemas se puede hacer directamente cifra por cifra

Pasaje directo

Debido a que las bases del sistema binario, octal y hexadecimal son potencias de 2, el pasaje entre números de esots sistemas se puede hacer directamente cifra por cifra

Cada cifra del sistema hexadecimal se puede representar con 4 del sistema binario.

Pasaje directo

Debido a que las bases del sistema binario, octal y hexadecimal son potencias de 2, el pasaje entre números de esots sistemas se puede hacer directamente cifra por cifra

Cada cifra del sistema hexadecimal se puede representar con 4 del sistema binario.

Cada cifra del sistema octal se puede representar con 3 del sistema binario.

Pasaje directo

Pasaje directo

Ejemplo con 32bits

 $53048 = 1100111100111000_{(2)}$

Pasaje directo

Ejemplo con 32bits

 $53048 = 1100111100111000_{(2)}$

Pasando a hexadecimal

Pasaje directo

Ejemplo con 32bits

$$53048 = 1100111100111000_{(2)}$$

Pasando a hexadecimal

Pasaje directo

Ejemplo con 32bits

 $53048 = 1100111100111000_{(2)}$

Pasando a octal

Pasaje directo

Ejemplo con 32bits

$$53048 = 1100111100111000_{(2)}$$

Pasando a octal

Pasaje directo

Ejemplo con 32bits

 $53048 = 1100111100111000_{(2)}$

Pasaje directo

Ejemplo con 32bits

$$53048 = 11001111001111000_{(2)} = CF38_{(16)} = 147470_{(8)}$$

$$0 + 0 = 0$$

$$0 + 0 = 0$$

$$1 + 0 = 1$$

$$0 + 1 = 1$$

$$0 + 0 = 0$$

$$1 + 0 = 1$$

$$0 + 1 = 1$$

$$1+1=0$$
 (pero hay acarreo)

$$\begin{array}{r} 9 \\ + 4 \\ \hline 13 \end{array}$$

$$egin{array}{ccc} 9 \ + & 4 \ \hline 13 \end{array}$$

$$0 \times 0 = 0$$

$$0 \times 0 = 0$$

$$1 \times 0 = 0$$

$$0 \times 1 = 0$$

$$0 \times 0 = 0$$

$$1 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 1 = 1$$

$$egin{array}{ccc} 3 \ imes 5 \ \hline 15 \ \end{array}$$

	3
×	5
	15

$$egin{array}{ccc} 7 \ imes 5 \ \hline 35 \ \end{array}$$

	7
X	5
	35

Producto

$$egin{array}{ccc} 7 \ imes 5 \ \hline 35 \end{array}$$

Ojo con el acarreo!!

Producto

0

Ojo con el acarreo!!

La representación binaria será posible dependiendo de la cantidad de bits usados

$$0 - 0 = 0$$

$$0 - 0 = 0$$

$$1 - 0 = 1$$

$$0 - 0 = 0$$

$$1 - 0 = 1$$

$$1 - 1 = 0$$

$$\begin{array}{r}
13 \\
- 4 \\
\hline
9
\end{array}$$

$$0 - 1 = ?$$

Representación de Números signados

Representación de Números signados

Problema: necesidad de representar números negativos

Representación de Números signados

Problema: necesidad de representar números negativos

Soluciones: ?

Ejemplo con 8 bits

Usando el bit más significativo como bit de signo

Ejemplo con 8 bits

Usando el bit más significativo como bit de signo

+13 en binario

0	0	0	0	1	1	0	1
				_	_		_

Ejemplo con 8 bits

Usando el bit más significativo como bit de signo

+13 en binario

-13 en binario

1	0	0	0	1	1	0	1
_	_	_	_	_	_	_	_

Ejemplo con 8 bits

Ejemplo con 8 bits

El problema

Ejemplo con 8 bits

El problema

+0 en binario

				_		_	
0	0	0	0	0	0	0	0

Ejemplo con 8 bits

El problema

+0 en binario

-0 en binario

- 1			_			_		
- 1	1	()	l ()	()	()	()	()	()
	-	_			_			_

Ejemplo con 8 bits

El problema

+0 en binario

-0 en binario

A diferencia del análisis matemático, en informática es el mismo número (+0 es igual a -0)

Ejemplo con 8 bits

Ejemplo con 8 bits

Para números negativos se complementa todo

Ejemplo con 8 bits

Para números negativos se complementa todo

+13 en binario

- 1								
	0	0	0	0	1	1	0	1

Ejemplo con 8 bits

Para números negativos se complementa todo

+13 en binario

-13 en binario

				_	_		
1	∣ 1	l 1	. 1	l 0	l 0	1	l 0
							0

Ejemplo con 8 bits

Ejemplo con 8 bits

El problema

Ejemplo con 8 bits

El problema

+0 en binario

_	_	_	_	_	_		_
1 n 1	l	1 n	1 n	1 n	1 n	1 n	. n
0							

Ejemplo con 8 bits

El problema

+0 en binario

-0 en binario

- 1		_	_	_		_	_	_
	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1
							L	
	_	_	_	_	_	_	_	_

Ejemplo con 8 bits

El problema

+0 en binario

-0 en binario

Nuevamente, doble representación del 0

Ejemplo con 8 bits

Ejemplo con 8 bits

Para números negativos se complementa todo, pero además, se incrementa en 1

Ejemplo con 8 bits

Para números negativos se complementa todo, pero además, se incrementa en 1

+13 en binario

1
4

Ejemplo con 8 bits

Para números negativos se complementa todo, pero además, se incrementa en 1

+13 en binario

0 0 0	0	1	1	0	1
-------	---	---	---	---	---

-13 en binario

1	1	1	1	0	0	1	0
							1
1	1	1	1	0	0	1	1

Ejemplo con 8 bits

Ejemplo con 8 bits

El problema, ahora resuelto

Ejemplo con 8 bits

El problema, ahora resuelto

+0 en binario

()	()	l ()	l ()	1 ()	()	()	l ()
		_	_		_	_	

Ejemplo con 8 bits

El problema, ahora resuelto

+0 en binario

_						_	_
0	0	0	0	0	0	0	0
				1			

-0 en binario

1	1	1	1	1	1	1	1
							1
0	0	0	0	0	0	0	0

$$\begin{array}{r} 4\\ - 13\\ \hline -9\end{array}$$

Qué número es?

Qué número es?

Si el bit más significativo es 1, sabemos que es un número negativo

Qué número es?

Si el bit más significativo es 1, sabemos que es un número negativo

Hay que *deshacer* el complemento a 2 y obtendremos el valor absoluto del número negativo

	0	0	0	0	0	1	0	0
+	1	1	1	1	0	0	1	1
	1	1	1	1	0	1	1	1
_								1
	1	1	1	1	0	1	1	0
C1	0	0	0	0	1	0	0	1

$$\begin{array}{r}
100 \\
- 36 \\
\hline
64
\end{array}$$

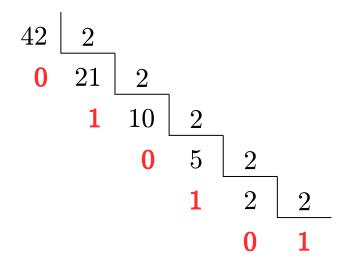
$$\begin{array}{r} 100 \\ - 36 \\ \hline 64 \end{array}$$

Primero: -36 a binario usando *complemento a 2*

$$\begin{array}{r} 100 \\ - 36 \\ \hline 64 \end{array}$$

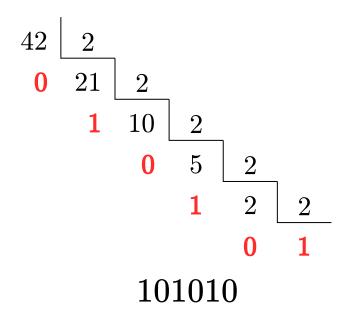
Primero: -36 a binario usando *complemento a 2*

El acarreo se ignora

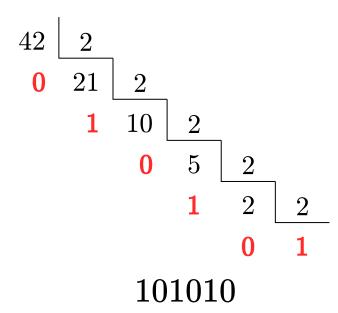

42.195

42.195

Tomando la parte entera


42.195

Tomando la parte entera


42.195

Tomando la parte entera

42.195

Tomando la parte entera y la parte fraccionaria

42.195

Tomando la parte entera

y la parte fraccionaria

$$0.195 \times 2 = 0.39$$

$$0.39 \times 2 = 0.78$$

$$0.78 \times 2 = 1.56$$

$$0.56 \times 2 = 1.12$$

42.195

Tomando la parte entera

y la parte fraccionaria

$$0.195\times 2={\color{red}0.39}$$

$$0.39 \times 2 = 0.78$$

$$0.78 \times 2 = 1.56$$

$$0.56 \times 2 = 1.12$$

.0011

101010.0011

101010.0011

La parte entera:

$$1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 42$$

101010.0011

La parte entera:

$$1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 42$$

La parte fraccionaria:

$$0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} =$$

101010.0011

La parte entera:

$$1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 42$$

La parte fraccionaria:

$$0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} =$$

$$0 \times 1/2 + 0 \times 1/4 + 1 \times 1/8 + 1 \times 1/16 =$$

101010.0011

La parte entera:

$$1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 42$$

La parte fraccionaria:

$$0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} =$$

$$0 \times 1/2 + 0 \times 1/4 + 1 \times 1/8 + 1 \times 1/16 =$$

$$0 \times 0.5 + 0 \times 0.25 + 1 \times 0.125 + 1 \times 0.0625 = 0.1875$$

$$42.195 \xrightarrow{\mathrm{a\ binario}} 101010.0011$$

$$101010.0011 \xrightarrow{\text{a decimal}} 42.1875$$

$$42.195 \xrightarrow{\mathrm{a\ binario}} 101010.0011$$

$$101010.0011 \xrightarrow{\text{a decimal}} 42.1875$$

Que pasó?

$$42.195 \xrightarrow{\mathrm{a\ binario}} 101010.0011$$

$$101010.0011 \xrightarrow{\text{a decimal}} 42.1875$$

Que pasó?

0.195 tiene una expansión binaria infinita

Notación punto fijo y punto flotante

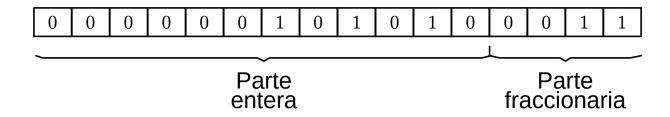
Punto fijo

Notación punto fijo y punto flotante

Punto fijo

Las computadoras, y en particular los espacios en ellas destinados a almacenar números, tienen una capacidad finita.

Punto fijo


Las computadoras, y en particular los espacios en ellas destinados a almacenar números, tienen una capacidad finita.

Para almacenar un número real una opción es destinar una cantidad **fija** de bits para la parte fraccionaria y otra parte fija para la parte entera.

Punto fijo

Las computadoras, y en particular los espacios en ellas destinados a almacenar números, tienen una capacidad finita.

Para almacenar un número real una opción es destinar una cantidad **fija** de bits para la parte fraccionaria y otra parte fija para la parte entera.

Punto flotante

Punto flotante

En este caso se descompone en dos partes, *mantisa* y *exponente*.

Cualquier valor real se puede expresar en notación científica como

$$r=m imes b^e$$

$$2.1 = 21 \times 10^{-1}$$

Punto flotante

En este caso se descompone en dos partes, *mantisa* y *exponente*.

Cualquier valor real se puede expresar en notación científica como

$$r=m imes b^e$$

$$2.1 = 0.21 \times 10^{1}$$

Punto flotante

En este caso se descompone en dos partes, *mantisa* y *exponente*.

Cualquier valor real se puede expresar en notación científica como

$$r=m imes b^e$$

$$2.1 = 2100 \times 10^{-3}$$

Punto flotante

Punto flotante

Se puede guardar por un lado la mantisa con su signo y por otro lado el exponente también con su signo.

Punto flotante

Se puede guardar por un lado la mantisa con su signo y por otro lado el exponente también con su signo.

El signo de la mantisa determina el signo del número, y el signo del exponente determina si es mayor o menor que 1.

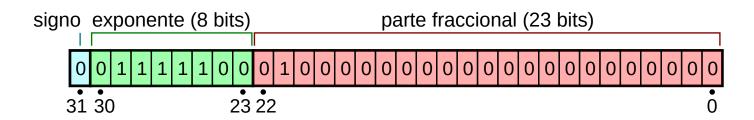
Punto flotante

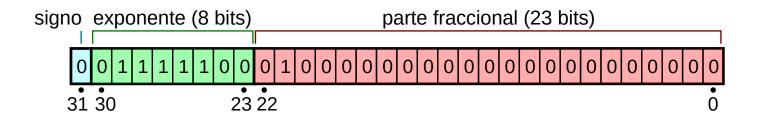
Se puede guardar por un lado la mantisa con su signo y por otro lado el exponente también con su signo.

El signo de la mantisa determina el signo del número, y el signo del exponente determina si es mayor o menor que 1.

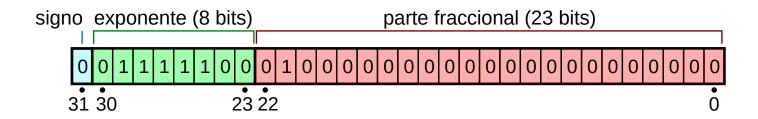
En computación se utiliza el estándar IEEE 754.

El estándar determina que se utilizan 32 bits para los números de punto flotante de simple precisión y 64 bits para los de doble precisión.

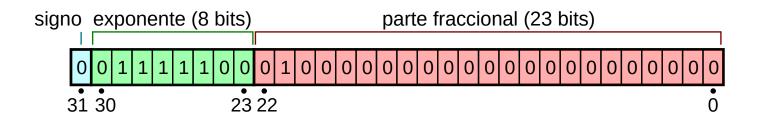

El estándar determina que se utilizan 32 bits para los números de punto flotante de simple precisión y 64 bits para los de doble precisión.


Para 32 bits

Bits de signo (S): 1 bit.

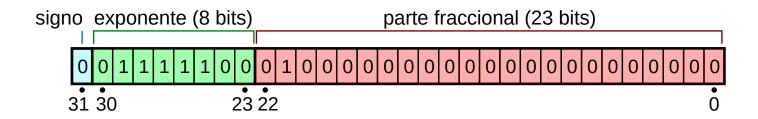

Exponente desplazado (E): 8 bits.

Significando o Mantisa (T): 23 bits.



$$r = (-1)^{b_{31}} imes \left(1 + \sum_{i=0}^{22} b_{22-i} 2^{-i}
ight) imes 2^{(e-127)}$$

$$r = (-1)^{b_{31}} imes \left(1 + \sum_{i=0}^{22} b_{22-i} 2^{-i}
ight) imes 2^{(e-127)}$$


$$r = (-1)^0 imes \left(1 + 2^{-2}
ight) imes 2^{(124-127)}$$

$$r = (-1)^{b_{31}} imes \left(1 + \sum_{i=0}^{22} b_{22-i} 2^{-i}
ight) imes 2^{(e-127)}$$

$$r = (-1)^0 imes \left(1 + 2^{-2}
ight) imes 2^{(124-127)}$$

$$r = \left(1 + rac{1}{4}
ight) imes rac{1}{8} = rac{10}{8} imes rac{1}{8} = rac{10}{64}$$

$$r = (-1)^{b_{31}} imes \left(1 + \sum_{i=0}^{22} b_{22-i} 2^{-i}
ight) imes 2^{(e-127)}$$

$$r = (-1)^0 imes \left(1 + 2^{-2}
ight) imes 2^{(124-127)}$$

$$r = \left(1 + rac{1}{4}
ight) imes rac{1}{8} = rac{10}{8} imes rac{1}{8} = rac{10}{64}$$

$$r = 0.15625$$

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

1 Si el número a analizar (N) es positivo, asignar a S=0 y, en caso contrario, S=1.

$$N = 0.15625$$

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

1 Si el número a analizar (N) es positivo, asignar a S=0 y, en caso contrario, S=1.

$$N = 0.15625$$

$$S = 0$$

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

2 Igualar N a 2^x .

Ejemplo

N = 0.15625

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

2 Igualar N a 2^x .

$$N = 0.15625$$

$$0.15635 = 2^x$$

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

3 Despejar la variable x, aplicando logaritmos decimales o naturales a ambos lados de la ecuación.

Ejemplo

N = 0.15625

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

3 Despejar la variable x, aplicando logaritmos decimales o naturales a ambos lados de la ecuación.

$$N = 0.15625$$
 $\frac{\ln 0.15635}{\ln 2} = x \implies x = -2.678$

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

4 Tomar como valor aproximado al entero inmediatamente inferior y llamarlo e.

Ejemplo

N = 0.15625

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

4 Tomar como valor aproximado al entero inmediatamente inferior y llamarlo e.

$$N=0.15625$$

$$x = -2.678 \approx -3 \implies e = -3$$

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

5 Tomar nuevamente el número decimal N e igualarlo a $m imes 2^e$.

$$N = 0.15625$$

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

5 Tomar nuevamente el número decimal N e igualarlo a $m imes 2^e$.

$$N = 0.15625$$

$$0.15625 = m \times 2^{-3}$$

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

6 Despejar m y quitarle la parte entera que siempre es 1. Éste es el bit a la izquierda de la coma binaria que nunca se incluye en el número en como flotante.

Ejemplo

N = 0.15625

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

6 Despejar m y quitarle la parte entera que siempre es 1. Éste es el bit a la izquierda de la coma binaria que nunca se incluye en el número en como flotante.

$$N=0.15625$$
 $\dfrac{0.15625}{0.125}=m \implies m=1.25 \implies m=\cancel{\lambda}.25$

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

7 Tomar la fracción del resultado y convertirla en binario.

Ejemplo

N = 0.15625

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

7 Tomar la fracción del resultado y convertirla en binario.

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

8 Sumar a e el valor de $127\,\mathrm{y}$ convertir el resultado a binario llamándolo E

Ejemplo

N = 0.15625

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

8 Sumar a e el valor de $127\,\mathrm{y}$ convertir el resultado a binario llamándolo E

$$N=0.15625$$

$$E=e+127 \implies E=124$$

$$E=01111100$$

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

9 Juntar los resultados de S, E y T que forman parte del número en formato IEEE 754 de 32bits.

N = 0.15625

Representación según formato IEEE 754

Para convertir un número real decimal en uno de formato IEEE 754 precisión simple se debe seguir el siguiente procedimiento:

9 Juntar los resultados de S, E y T que forman parte del número en formato IEEE 754 de 32bits.

Representación de números decimales donde cada dígito del número en base 10 se representa en base 2

Representación de números decimales donde cada dígito del número en base 10 se representa en base 2

0	1	2	3	4	5	6	7	8	9
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

Ejemplo para 16 bits:

en base 2:

2019 = 00000111111100011

Ejemplo para 16 bits:

```
en base 2:
```

2019 = 00000111111100011

en BCD:

2019 = 001000000011001

Representación de caracteres: ASCII.

Caracteres de Control

Binario	Decimal	Hex	Abreviatura	Nombre/Significado/Representación
00000000	0	00	NUL	Carácter Nulo
00000001	1	01	SOH	Inicio de Encabezado
00000010	2	02	STX	Inicio de Texto
00000011	3	03	ETX	Fin de Texto
00000100	4	04	EOT	Fin de Transmisión
00000101	5	05	\mathbf{ENQ}	Consulta
00000110	6	06	\mathbf{ACK}	Acuse de recibo
00000111	7	07	BEL	Timbre
00001000	8	08	BS	Retroceso
00001001	9	09	${ m HT}$	Tabulación horizontal
00001010	10	0A	${f LF}$	Salto de línea
00001011	11	0B	m VT	Tabulación Vertical
00001100	12	0C	\mathbf{FF}	Avance de página
00001101	13	0D	CR	Retorno de carro
00001110	14	0E	\mathbf{SO}	Desactivar mayúsculas
00001111	15	0F	\mathbf{SI}	Activar mayúsculas

Caracteres de Control (cont.)

Binario	Decimal	Hex	Abreviatura	Nombre/Significado/Representación
00010000	16	10	DLE	Escape vínculo de datos
00010001	17	11	DC1	Control de dispositivo 1 (XON)
00010010	18	12	$\mathrm{DC2}$	Control de dispositivo 2
00010011	19	13	DC3	Control de dispositivo 3 (XOFF)
00010100	20	14	DC4	Control de dispositivo 4
00010101	21	15	NAK	Acuse de recibo negativo
00010110	22	16	SYN	Síncronía en espera
00010111	23	17	ETB	Fin del bloque de transmisión
00011000	24	18	CAN	Cancelar
00011001	25	19	${f EM}$	Fin del medio
00011010	26	1A	SUB	Substitución
00011011	27	1B	ESC	ESC o Escape
00011100	28	1C	FS	Separador de archivo
00011101	29	1D	GS	Separador de grupo
00011110	30	1E	RS	Separador de registro
00011111	31	1F	$\overline{\mathrm{US}}$	Separador de unidad
01111111	127	7F	DEL	DEL o Suprimir

Caracteres Imprimibles

Binario	Decimal	Hex	Representación	Binario	Decimal	Hex	Representación
00100000	32	20	espacio ()	00110000	48	30	0
00100001	33	21	!	00110001	49	31	1
00100010	34	22	"	00110010	50	32	2
00100011	35	23	#	00110011	51	33	3
00100100	36	24	\$	00110100	52	34	4
00100101	37	25	%	00110101	53	35	5
00100110	38	26	&	00110110	54	36	6
00100111	39	27	,	00110111	55	37	7
00101000	40	28	(00111000	56	38	8
00101001	41	29)	00111001	57	39	9
00101010	42	2A	*	00111010	58	3A	:
00101011	43	2B	+	00111011	59	3B	;
00101100	44	2C	,	00111100	60	3C	<
00101101	45	2D	-	00111101	61	3D	=
00101110	46	2E		00111110	62	3E	>
00101111	47	2F	/	00111111	63	3F	?

Caracteres Imprimibles

Binario	Decimal	Hex	Representación	Binario	Decimal	Hex	Representación
01000000	64	40	@	01010000	80	50	P
01000001	65	41	A	01010001	81	51	Q
01000010	66	42	В	01010010	82	52	R
01000011	67	43	\mathbf{C}	01010011	83	53	S
01000100	68	44	D	01010100	84	54	${f T}$
01000101	69	45	${f E}$	01010101	85	55	U
01000110	70	46	F	01010110	86	56	V
01000111	71	47	G	01010111	87	57	W
01001000	72	48	H	01011000	88	58	X
01001001	73	49	I	01011001	89	59	\mathbf{Y}
01001010	74	4A	J	01011010	90	5A	${f Z}$
01001011	75	4B	K	01011011	91	5B	[
01001100	76	4C	${f L}$	01011100	92	5C	\
01001101	77	4D	\mathbf{M}	01011101	93	5D]
01001110	78	4E	N	01011110	94	5E	\wedge
01001111	79	4F	0	01011111	95	5F	_

Caracteres Imprimibles

Binario	Decimal	Hex	Representación	Binario	Decimal	Hex	Representación
01100000	96	60	`	01110000	112	70	p
01100001	97	61	a	01110001	113	71	\mathbf{q}
01100010	98	62	b	01110010	114	72	r
01100011	99	63	c	01110011	115	73	S
01100100	100	64	d	01110100	116	74	t
01100101	101	65	e	01110101	117	75	u
01100110	102	66	\mathbf{f}	01110110	118	76	v
01100111	103	67	g	01110111	119	77	w
01101000	104	68	h	01111000	120	78	x
01101001	105	69	i	01111001	121	79	у
01101010	106	6A	j	01111010	122	7A	${f z}$
01101011	107	6B	k	01111011	123	7B	{
01101100	108	6C	1	01111100	124	7C	
01101101	109	6D	m	01111101	125	7D	}
01101110	110	6E	n	01111110	126	7E	~
01101111	111	6F	0				