
c← cumsum(q)
for i = 1→ N do

u← U(0, 1]
l← 0
while u > cl do

l + +
end while
new_pi← pl

end for

Results

Comparison of particle filters for nonlinear
systems on massively parallel architectures

Introduction
In robotics, there are dynamic systems in which it is necessary

to estimate the system current state given information

provided by measurements of available sensors. All these

measurements contain different kinds of noise. Bayesian

filtering is a recursive probabilistic method that estimates the

system state using the system model and known sensor noise

statistics.

Particle filter (PF) belongs to this kind of filters and it is able

to work in systems with large nonlinearities. This algorithm is

suitable to be used on parallel architectures, but it has major

bottlenecks that need to be optimized. In this work different

approaches to implement particle filters on massively parallel

architectures are evaluated and the results of these filters in

highly non-linear models are shown.

Claudio José Paz

cpaz@scdt.frc.utn.edu.ar

Research Center in Informatics for Engineering - UTN - FRC

xk+1 = 0.5xk +
25xk
1 + x2k

+ 8cos(1.2(k − 1)) + wk

yk =
x3k
20

+ vk

References
[1 ] Gordon, Salmond, Smithdt, Novel approach to nonlinear/non-Gaussian Bayesian state estimation , IEEE Radar and Signal Processing, 1993

[2] Arulampalam, Maskell, Gordon, Clapp,A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking, IEEE Signal Processing, 2002

[3] Gong, Basciftci, Ozguner, A Parallel Resampling Algorithm for Particle Filtering on Shared-Memory Architectures, IEEE Parallel and Distrib. Processing, 2012

[4] Bolic, Djuric, Hong, New resampling algorithms for particle filters, IEEE Acoustics, Speech, and Signal Processing, 2003

To evaluate the different algorithms a variant of the univariate

nonstationary growth model presented in [1 ] was implemented

as follows

Conclusion
Before GPUs, solving real-time problems with particle filters was unsuitable, because they

need a big amount of particles for achieve asymptotic results. Nowadays, low-cost GPU

allows the implementation of this kind of filters.

Three different resampling algorithms were implemented and tested on GPU using

pyCUDA and all of them showed better performance than the parallel version of the

bootstrap particle filter. Residual systematic resampling is the fastest implementation.

Residual systematic and shared memory resampling are suitables for real-time application

even with a big amount of particles.

In future work, the implemented resampling methods will be tested with real problems in

real-time applications.

Methods

The bootstrap PF approach [1 ] is the easiest to implement. It

consists of three stages: Prediction, Update and Resampling.

Between update and resampling, a weighted average of the

particles is calculated to obtain the estimated state.

xik ← f(xik−1, k, wk)

Prediction

zi← yk − h(xik, vk)

qik ← qik−1

exp

(
−
zi

2

2σ2v

)
√

2πσ2v

qik ←
qik∑
qk

Update

Resampling

xk ←
∑

xikq
i

Weighted Average

Three resampling variants were implemented for performance

evaluation: Systematic [2] , Shared Memory [3] and Residual

Systematic Resampling [4] and all were compared with the

bootstrap approach (BSR) for different amount of particles

(up to 320K). Prediction and update stages were the same for

all tests. Since, all implementations present very low

estimation errors, in this work only time performance are

shown. All algorithms were implemented on pyCUDA in a

GeForce GTX560 board.

c← cumsum(q)
u← U(0, 1/N ]
for i = 1→ N do

û← u +N−1(i− 1)
l← 0
while û > cl do

l + +
end while
new_pi← pl

end for

Systematic Resampling
(SR)

c← cumsum(q)
u← U(0, 1/N ]
for i = 1→ N do

b← ci − u
l← b ∗N + 2
r ← (b + qi) ∗N + 1
for j = l→ r do

new_pj ← pi

end for
end for

Shared Memory
Resampling (SMR)

c← cumsum(q)
u← U(0, 1/N ]
for i = 1→ N do

l← i− 1
if l >= 0 then

u← u + l/N − cl

end if
l← (ci − u) ∗N + 1
new_pi← pl

end for

Residual Systematic
Resampling (RSR)

8000 20000 40000 80000 160000 320000
Particles

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Ti
m
e
 [
s]

Time by Filter and Number of particles

SMR PF
RSR PF

Acknowledgment
This work was partially funded by the project "Autonomous Vehicle Guidance Fusing

Low-cost GPS and other Sensors", PICT-PRH-2009-0136.

ui← U(0, 1]
xik ← xmk−1 with
m−1∑
j=0

qj < ui ≤
m∑
j=0

qj

• Mayor bottleneck of particle filters

• Parallelization is not trivial

Filter / N 4K 8K 20K 40K 80K 160K 320K
BSR 0.0020s 0.0033s 0.0109s 0.0592s 0.3256s 0.9051s 2.2223s
SR 0.0014s 0.0018s 0.0032s 0.0055s 0.01073s 0.0204 0.0388s

SMR 0.0010 0.0011s 0.0012s 0.0013s 0.0017s 0.0023s 0.0030s
RSR 0.0009s 0.0010s 0.0011s 0.0012s 0.00132s 0.0018s 0.0024s

The particle filters were tested using different amount of particles (4K, 8K, 20K, 40K,

80K, 160K and 320K). All implemented methods outperform the bootstrap approach. The

fastest was the Residual Systematic Resampling (RSR) which was able to work in real-time

with incoming data up to 400Hz.




