H Comparison of particle filters for nonlinear
systems on massively parallel architectures

Claudio José Paz
cpaz@scdt.frc.utn.edu.ar
Research Center 1in Informatics for Engineering - UTN - FRC

Introduction Results
In m]?OthS’ there are dynamic systemF m thh it 15 necessaty " Systematic Resampling | [Shared Memory | [Residual Systematic
to estimate the system current state given information (SR) Resampling (SMR) Resampling (RSR)
provided by measurements of available sensors. All these ¢ < cumsum(q) ¢ < cumsum(q) ¢ < cumsum(q)
measurements contain different kinds of noise. Bayesian u<— U0, 1/N| u < U(0,1/N] u < U0, 1/N]
filtering 1s a recursive probabilistic method that estimates the fori=1— N do for:=1— Ndo for:=1— N do
system state using the system model and known sensor noise U4 u+ N7 i—1) b c' —u l —1—1
StatiStiCS l — O l — b X N -+ 2 |f l >= O then
' TP z i l

Particle filter (PF) belongs to this kind of filters and it 1s able while @ > ¢ do I .(b +¢)* N +1 U U [/N —c
t K t b1 linearities. This aleorithm i [+ + forj=1— rdo end if
0 work in systems with large nonlinearities. This algorithm s end while new pl ' |« (¢ —u)* N +1
suitable to be used on parallel architectures, but i1t has major new pi < pl end for new p' — p'
bottlenecks that need to be optimized. In this work different end for end for end for
approaches to implement particle filters on massively parallel) . . 7 . e ’
architectures are evaluated and the results of these filters in The particle filters were test.ed using ditferent amount of j?artlcles (4K, 8K, 20K, 40K,
highly non-linear models are shown. 30K, 160K and 32QK). All 1mp1qnented mthods outperf:(.)rm the bootstrap approach. The

\) | fastest was the Residual Systematic Resampling (RSR) which was able to work 1n real-time

with incoming data up to 400Hz.

Methods Fil N| 4K K 20K | 40K 0K | 160K | 320K
To evaluate the different algorithms a variant of the univariate ter /
. . . BSR 0.0020s[0.0033s[0.0109s]0.0592s| 0.3256s |0.9051s|2.2223s
nonstationary growth model presented in [1] was implemented
SR 10.0014s]0.0018s]0.0032s[0.0055s10.01073s| 0.0204 |0.0388s
as follows .
Lk
= 0.5z} - 8cos(1.2(k — 1
Tt = 052k + 777 p + 8eos(L.24k — 1)) 4wy RSR 0.0009s]0.0010s]0.00115]0.00125]0.001325]0.00185]0.0024s
7
yk — 2_0 —I_ Ul r)
Time by Filter and Number of particles
The bootstrap PF approach [1] 1s the easiest to implement. It ' L ' ' P '
consists of three stages: Prediction, Update and Resampling. == SMR PF
. . 0.0030} RSR PF
Between update and resampling, a weighted average of the
particles 1s calculated to obtain the estimated state. 0.0025}
r Prediction 1(Update ’ —
» 0.0020}
. . i i &
), < £z, b, wy) 2" yp — h(zj, vp) £ 0.0015}
;2
2
: : | | CXP (205) 0.0010}
Weighted Average qr < 91 Iro? 000051
i - C]}i
— .
Tk Z Yrd e < Z qy. 0.0000 8000 20000 40000 80000 160000 320000
: Particles)
r Resampling 11 . .
u' < U0, 1] ¢ = cumsum(q) Conclusmn.
| | fori=1— N do Betore GPUs, solving real-time problems with particle tilters was unsuitable, because they
z), < 2, with u — U(0, 1] need a big amount of particles for achieve asymptotic results. Nowadays, low-cost GPU
m—1 . [<0 allows the implementation of this kind of filters.
ZOC]]<U SZOQJ while © > ¢ do
j= j=
| | Ci ™ IJIF'I Three different resampling algorithms were implemented and tested on GPU using
* Mayor bottleneck of particle filters zgw WZ. Le : pyCUDA and all of them showed better performance than the parallel version of the
* Parallelization 1s not trivial end fo r_p b bootstrap particle filter. Residual systematic resampling is the fastest implementation.
\ y Residual systematic and shared memory resampling are suitables for real-time application
Three resampling variants were implemented for performance even with a big amount of particles.
evaluation: Systematic [2], Shared Memory [3] and Residual
Systematic Resampling [4] and all were compared with the In future work, the implemented resampling methods will be tested with real problems in
bootstrap approach (BSR) for different amount of particles real-time applications.
(up to 320K). Prediction and update stages were the same for) ’
all tests. Since, all implementations present very low (°
estimation errors, 1n this work only time performance are Acknowledgment
shown. All algorithms were implemented on pyCUDA in a This work was partially funded by the project "Autonomous Vehicle Guidance Fusing
GeForce GTX560 board. Low-cost GPS and other Sensors", PICT-PRH-2009-0136.
References

1] Gordon, Salmond, Smithdt, Novel approach to nonlinear/non-Gaussian Bayesian state estimation IEEE Radar and Signal Processing, 1993

2] Arulampalam, Maskell, Gordon, Clapp, A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking, IEEE Signal Processing, 2002
3] Gong, Bascittci, Ozguner, A Parallel Resampling Algorithm for Particle Filtering on Shared-Memory Architectures, IEEE Parallel and Distrib. Processing, 2012
4] Bolic, Dyuric, Hong, New resampling algorithms for particle filters, IEEE Acoustics, Speech, and Signal Processing, 2003

