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Abstract— This work presents an empirical study

that compares the performance of Bayesian filters

for orientation estimation using data provided by an

Inertial Measurement Unit. A two-stages measure-

ment update was implemented for different variants

of Kalman and particles filters using quaternions as

orientation representation method. Empirical results

show that all tested algorithms converge to the correct

orientation even if the initial orientation is unknown.
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1 INTRODUCTION

An important topic in the research field of mobile

robotics is autonomous navigation, in which it is required

to determine the robot position and orientation with high

precision. The problem of position and orientation (also

known as pose) estimation depends on the kind of robot

locomotion, being either terrestrial or aerial robots. Re-

cently, there is an increasing interest in using Unmanned

Aerial Vehicles (UAV) for autonomous tasks for different

applications. Pose estimation for aerial vehicles has to be

performed in tree dimensional space, which is composed

of 6 variables (3 for position and 3 for orientation). More-

over, this also applies for Autonomous Ground Vehicles

(AGV) operating in an outdoor environment in rough ter-

rain.

In mobile robotics there exist different types of sensor

that can be used for position and orientation estimation,

and generally a combination of the data provided by sev-

eral of them provides better results. This combination is

known as sensor fusion or integration, and Bayesian fil-

tering is widely used approach for doing it. Generally in-

ertial sensors like accelerometers, gyroscopes, and mag-

netometers are combined for pose estimation in mobile

robotics; and recently the development of MEMS (Micro

Electro Mechanical Systems) [1] applied to inertial sen-

soring has made possible to reduce their production cost.

Bayesian filtering is a recursive method used for state

estimation based on measurements affected by noise with

known statistical description, together with the stochas-

tic state space system model [2]. Moreover, as previ-

ously mentioned, Bayesian filtering can be used to per-

form information fusion using different sensors. Nu-

merous implementations of Bayesian filters exist, be-

ing either Gaussian or non-Gaussian approaches. Gaus-

sian approaches include the generally used Extended

Kalman Filter (EKF)[3], and the Unscented Kalman Fil-

ter (UKF)[4]; and non-Gaussian approach are based on

Monte Carlo method known as Particle Filters (PF)[5].

Extended Kalman Filter (EKF) is an extension of the

Kalman Filter (KF), where the main difference is that

while the latter is applied for linear system the former

is for non-linear cases. The linearization in EKF is per-

formed using a first order Taylor series expansion cen-

tered in the estimated value, which is used to propagate

the mean and covariance of a Gaussian random variable.

In a different way, the UKF avoid the use of a lineariz-

ing version of non-linear model because is based on the

Unscented Transform (UT). The UT allows to propagate

a Gaussian random variable through a non-linear func-

tion, and differs from the Taylor expansion in the sense

that the UT directly approximates the mean and covari-

ance of the target distribution instead of trying to approx-

imate the non-linear function. The Unscented Transform

works by choosing sample points (sigma points) deter-

ministically which capture the mean and covariance of

the original distribution. This points are transformed by

the non-linear function and then statistics of the trans-

formed samples are computed. On the other hand, Par-

ticle Filter (PF) works similarly to the UKF in the sense

that the target distribution of a given random variable is

represented by samples or particles, even thought it is not

restricted to Gaussian or even unimodal distribution. An

special case of PF is the Gaussian Particle Filter (GPF)[6]

which is based on the propagation of the mean and co-

variance matrix of the variables. The implementation of

a PF have an important problem known as sample degen-

eracy, which can be partially overcome using resample

techniques. However, in GPF sample degeneracy can be

avoided by drawing new samples in every step using the

estimated mean and covariance matrix.

In this work, a comparative study of different Bayesian

filtering methods will be performed applied to the prob-

lem of orientation estimation using inertial measure-

ments from MEMS sensors. In this respect we extend

the work done in [7] and [8] in comparing other filters

(PF and GPF) capable of being implemented in paral-

lelizable platforms. The orientation estimation is based

on quaternion representation which presents some ad-

vantages against other orientation representation. The
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stochastic state space model for quaternion estimation

will be described in details. A comparative evaluation

will be shown using EKF, UKF as well as PF and GPF,

all based on measurements from real sensors.

This work is organized as follows. In Section 2, an

introduction to recursive Bayesian state estimation tech-

niques including EKF, UKF, PF and GPF are given. De-

tails concerning the implementations of the different fil-

ters is discussed in section 3. Finally, theirs results are

shown in section 4.

2 BAYESIAN FILTERS

Given a stochastic state-space model, with

xk+1 = fk(xk,wk), (1)

yk = hk(xk, vk), (2)

as the process and observation equations respectively

where xk ∈ R
n is the state vector at time k, with

fk : Rn × R
m → R

n as a state transition function and

where yk ∈ R
p is the observation vector at time k, with

hk : Rn × R
r → R

p as a measurement function relating

the state vector xk with the observation yk. Additionally

wk ∈ R
n and vk ∈ R

r are zero mean white noise.

Considering a time step k, if p(xk−1|Dk−1) is avail-

able at k − 1, with Dk−1 = {yi : i = 1, . . . , k − 1} the

set of all measurements until k, it is possible to use the

system model to find the prior state probability density

function (pdf)

p(xk|Dk−1) =

∫

p(xk|xk−1)p(xk−1|Dk−1)dxk−1,

(3)

where p(xk|xk−1) is the state transition pdf from step

k − 1 to step k.

Later, when observation yk is available, the prior state

can be updated via the Bayes rule

p(xk|Dk) =
p(yk|xk)p(xk|Dk−1)

p(yk|Dk−1)
, (4)

where

p(yk|xk) =

∫

δ(yk − hk(xk, vk))p(vk)dvk (5)

is known as likelihood and can be obtained by the system

measurement model and parameters of the noise vk.

The denominator of (4) is a normalization factor called

evidence and it is given by

p(yk|Dk−1) =

∫

p(yk|xk)p(xk|Dk−1)dxk. (6)

The goal of the recursive Bayesian filter is to find the

current state pdf p(xk|Dk) given all the information avail-

able at the discrete time k with the successive application

of prediction and update, (3) and (4) respectively.

When f(·) and h(·) are linear, it is possible to find a

closed-form solution and the KF algorithms are suitable.

Otherwise, alternative methods must be used.

2.1 Extended Kalman Filter

The Extended Kalman Filter is a variant of the KF in

which fk(·) and hk(·) are linearaized around the esti-

mated state x̂k. Formally, given the discrete time non-

linear system in (1) and (2) the state estimation x̂k is per-

formed following the next steps.

• Prediction. Compute the process equation Jaco-

bian around previous state estimation x̂k−1 and

predict the state x̂
−

k and covariance error matrix

P−

k

Fk−1 =
∂fk−1

∂x

∣

∣

∣

∣

x̂k−1

, (7)

Qk−1 = E[wk−1wT
k−1], (8)

x̂
−

k = fk−1(x̂k−1), (9)

P−

k = Fk−1Pk−1F
T
k−1 +Qk−1. (10)

• Update. Obtain the measurement equation Jaco-

bian around the predicted state of the actual step

x̂
−

k then update the state prediction and covariance

error matrix

Hk =
∂hk

∂x

∣

∣

∣

∣

x̂
−

k

, (11)

Rk = E[vkvTk ], (12)

Kk = P−

k HT
k (HkP

−

k HT
k +Rk)

−1, (13)

x̂k = x̂
−

k +Kk(yk − hk(x̂
−

k )), (14)

Pk = (I −KkHk)P
−

k . (15)

2.2 Unscented Kalman Filter

Another way of dealing with non-linear functions is us-

ing the unscented transform (UT). The UT is a numerical

method used for estimate the mean and covariance of a

random variable after a non-linear transformation.

2.2.1 Unscented transform

Given a random variable x with mean x̄ and covariance Px

and a non-linear transformation Φ(·), UT seeks to obtain

a new random variable y = Φ(x). It is possible to recover

the statistic parameters of y via the unscented transform

following the next steps.

• Calculate sigma points X = {Xi : i = 0, . . . , 2n}
with n the state space dimension

X0 = x̄, (16)

Xi = x̄ +
√
l + λ · Si, i = 1, . . . , l, (17)

Xi = x̄ −
√
l + λ · Si, i = l + 1, . . . , 2l, (18)

with λ = α2(l + κ)− l and l the dimension of the

state space. Si is the i-th column of a Cholesky de-

composition of matrix Px to get Px = SST . The

parameter α determines the spread of sigma points

around the mean, κ is a secondary scaling parame-

ter which is usually set to 0 or 3− l[9].
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• Calculate each sigma point weight W

Wm
0 =

λ

l + λ
, (19)

Wc
0 =

λ

l + λ
+ 1− α2 + β, (20)

Wm
i = Wc

i =
λ

2(l + λ)
, i = 1, . . . , 2l. (21)

The parameter β is used to incorporate prior

knowledge of the distribution of x (for Gaussian

distributions β = 2 is optimal)[9].

• Apply the non-linear function f(·) to sigma points,

estimate new mean ȳ and covariance Py and cal-

culate cross covariance between input and output

Pxy

Yi = Φ(Xi), i = 1, . . . , 2l, (22)

ȳ =
2l
∑

i=0

Wm
i Yi, (23)

Py =
2l
∑

i=0

Wc
i (Yi − ȳ) · (Yi − ȳ)T , (24)

Pxy =
2l
∑

i=0

Wc
i (Xi − x̄) · (Yi − ȳ)T . (25)

2.2.2 UKF implementation

Given the non-linear system modeled by (1) and (2) the

state estimation x̂k is performed as follows:

• Form the augmented state vector x̂
a

and augmented

error covariance matrix P a with mean and covari-

ance from previous step and the process noise co-

variance matrix Qk−1 from (8)

xak−1 =

(

x̂k−1

0

)

, (26)

P a
k−1 =

(

Pk−1 0

0 Qk−1

)

. (27)

• Use the UT to obtain predicted state x̂
−

k and pre-

dicted covariance error matrix P−

k using Φ(·) and

non-linear function f(·)
• Prepare a new augmented vector using predicted

state x̂
−

k , predicted covariance error matrix P−

k and

measurement noise covariance matrix Rk like (12)

x−a
k =

(

x̂
−

k

0

)

, (28)

P−a
k =

(

P−

k 0

0 Rk

)

. (29)

• Obtain the measurement prediction ŷ
−

using UT

with the augmented elements obtained in the pre-

vious step and with non-linear function h(·) and

calculate Kalman gain matrix

Kk = PxyP
−1
y , (30)

• With Kalman gain update the state and covariance

error matrix

x̂k = x̂
−

k +Kk(y − ŷ
−), (31)

Pk = P−

k −KkPyK
t
k. (32)

2.3 Particle Filter

This algorithm is so called because consists of a set of N
elements or particles which are system state hypothesis.

Each of these particles have a paired weight proportional

to the likelihood of this state. Thus, a discrete pdf is ob-

tained without need of its parameters and it is possible to

deal with high nonlinearities in measurement and process

functions [5].

Formally, given a set of N particles or sam-

ples Xk−1 = {x1, . . . , xN} and associated weights

Wk−1 = {w1, . . . , wN} distributed according to the

pdf p(xk−1|Dk−1), the particles filter performs the prop-

agation of samples through the non-linear function f(·)
and updates this samples via Bayes rule and non-linear

function h(·) to obtain the target pdf p(xk|Dk). This is

accomplished with recursive approximations of (3) and

(4) as follows:

• In prediction step, pass each particle through the

non-linear function

xi−
k = f(x̂i

k−1,wi
k−1), (33)

where wi
k−1

are noise samples distributed accord-

ing to p(wk−1).

• In update step, assign a weight value to each parti-

cle depending of their likelihood [10]

wi
k ∝ wi

k−1 p(yk|xi−
k ), (34)

• Normalize particles weight.

wi
k =

wi
k

N
∑

j=1

wj
k

, (35)

This implementation has the so called degeneracy prob-

lem, in which after a few steps, all but one particle will

have negligible weights. It is possible to reduce the ef-

fects of degeneracy with a method called resampling. In

this method, particles with higher weight are selected and

copied to replace those with smaller weights [10]. This

step is the bottleneck of speed performance in PF. Differ-

ent methods are known to perform the resampling [11]. In

the simplest [5], N samples according to uniform distri-

bution U on the interval (0, 1] are drawn, and the particle

xmk is selected for the copy as long as it meets with

m−1
∑

j=0

wj
k < ui

k ≤
m
∑

j=0

wj
k. (36)

After resampling, all weights must be set to 1/N .
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Assuming unimodality, the system state can be calcu-

lated using the particles and their updated weights, per-

form a weighted mean to obtain the estimated state x̂k

x̂k =

N
∑

i=1

wi
k xi−k . (37)

2.4 Gaussian Particle Filter

Gaussian particle filter is a variant of PF in which the

samples are drawn according to previous mean and co-

variance estimation in each step. Hence, the resampling

stage is not needed. The procedure is simpler than PF and

it is described in the following steps.

• Draw samples from previous mean and covariance

and denote them as {x
j
k : j = 0, . . . ,M}

• Pass this samples through the non-linear process

function f(·) and compute the predicted mean x̂
−

k

and covariance P−

k

x̂
−

k =
1

M

N
∑

j=0

x
j
k, (38)

P−

k =
1

M

N
∑

j=0

x
j
k. (39)

• Draw samples according to predicted mean x̂
−

k and

covariance P−

k

• Obtain the likelihood of each particle using the

multivariate normal distribution as in (34)

• Normalize particles weight as in (35)

• Compute the mean x̂k and covariance Pk using the

particles and their weights

x̂k =
N
∑

j=0

wj
k x

j
k, (40)

Pk =

N
∑

j=0

wj
k x

j
k. (41)

Since at each step the algorithm draws new samples,

the GPF does not suffer the degeneracy phenomenon and

does not need resampling step.

3 FILTER IMPLEMENTATIONS

The goal of the filter is the state estimation using inertial

sensor readings. Three axes accelerometers, gyroscopes

and magnetometers are available.

Orientation of a rigid body is defined by a rotation from

a reference frame to the current body frame. Generally,

the reference frame is a fixed coordinate system and the

body frame is attached to the body, consequently it rotates

and moves with it. For notation matters a left superscript

letter n is used to refer the navigation or reference frame

and b is used to refer the body frame.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

q 0

EKF
UKF
PF
GPF
GT

−0.2

−0.1

0.0

0.1

0.2

q 1
−0.2

−0.1

0.0

0.1

0.2

q 2

0 10 20 30 40 50
Steps

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

q 3

Figure 1: Estimated quaternions vs. GT

3.1 System State

The system state is composed of the orientation quater-

nion

xk = qk =









q0
q1
q2
q3









, (42)

which must always have unity norm.

3.2 Process equation

Given the time derivative of quaternion q[12]

q̇ =
dq

dt
=

1

2
q ∗ ω (43)

with the skew symmetric matrix of ω = [ωx, ωy, ωz]
T

Ω(ω) =









0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0









(44)

898



XV Reunión de Trabajo en Procesamiento de la Información y Control, 16 al 20 de septiembre de 2013

−3

−2

−1

0

1

2

3

φ

EKF
UKF
PF
GPF
GT

−3

−2

−1

0

1

2

3

θ

0 10 20 30 40 50
Steps

−200

−150

−100

−50

0

ψ

Figure 2: Euler angles from estimated quaternions

it is possible to operate as follows to find the process

equation

qk − qk−1

∆t
=

1

2
Ω(ω)qk−1 (45)

qk =
1

2
Ω(ω)qk−1∆t+ qk−1 (46)

qk =

(

1

2
Ω(ω)∆t+ I

)

qk−1, (47)

then, using

Fk =
1

2
Ω(ω)∆t+ I, (48)

the process equation becomes

xk = Fkxk−1 + wk−1, (49)

which is only valid if xk−1 is normalized. It can be seen

than process equation is already linear.

3.3 Measurement equation

Measurement is performed in two stages, where the pre-

dicted state is updated first with the accelerometer read-

ings and next with the magnetometer. The accelerometer

is used as tilt sensor to obtain pitch and roll angles given

that accelerometer detects gravity. The magnetometer is

used to obtain yaw angle since it can measure the mag-

netic North. The two update stages allows the use of dif-

ferent rate sensors to correct yaw angle.

Measurement equations can be obtained using sensor

models. Considering a static body, accelerometers can be

modeled by

bak = Rbn ng + b + vak, (50)

where b is the bias and vak is zero mean Gaussian noise.

Bias values can be neglected. Vector ng is the accelera-

tion due gravity, which varies with latitude but it can be

considered constant in a reduced work space. Therefore
ng = [0 0 g]T can be supposed.

Hence, the rotation matrix from navigation to body

frame according to [12] becomes

hak(xk) = g





2(q1q3 − q2q0)
2(q2q3 + q1q0)

q20 − q21 − q22 + q23



 . (51)

At the magnetometer update stage a similar reduction

can be made. Magnetometer vector nm = [mN 0 mD]T

has two nonzero components, the North component and

the component pointing to the center of the Earth, this

third component can be eliminated given that it does

not provide information about the yaw angle. Once this

component is eliminated, normalization of the vector is

needed to get nm̃ = [1 0 0]T . Hence, with the rotation

matrix from navigation to body frame the measurement

function becomes

hmk(xk) =





q20 + q21 − q22 − q23
2(q1q2 − q3q0)
2(q1q3 + q2q0)



 . (52)

In (51) and (52) nonlinearities are observed and it can

deal with these using the described methods.

4 RESULTS

The evaluation test was made using data provided for a

commercial inertial measurement unit (IMU). This IMU

is able to provide Gyro-Stabilized quaternion and Euler

angles, as well as raw data from inertial sensor at 50Hz.

These additional features allows to compare the evaluated

algorithm with a ground truth (GT) provided by the IMU

itself.

All filters were set with the same parameters using the

known sensor noise statistics. Besides, both PF and GPF

are used with 30000 particles.

Figure 1 shows quaternion estimation obtained by each

evaluated filter where it can be seen that all filters con-

verge in few iterations. The fastest to converge is the

GPF and the slowest is the PF. The comparison was made

against the Gyro-Stabilized quaternion provided by IMU.

Figure 2 shows roll, pitch and yaw angles calculated from

quaternions of each filter [12]. Low variances are ob-

served in all the implementations. EKF, UKF and GPF

have a similar variance of ±0.5◦, while the PF shows a

poorer performance.

Figure 3 shows that all implementations have low esti-

mation error. The dashed lines show the 1σ bounds.
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Figure 3: Estimation errors of each filter and 1σ covari-

ance bound

5 CONCLUSIONS

In this work, an evaluation of different probabilistic al-

gorithms for the rigid body orientation estimation was

presented. Four known Bayesian filters were described

and implemented, Extended Kalman Filter, Unscented

Kalman Filter, Particle Filter and Gaussian Particle Fil-

ter.

A two-stages measurement algorithm was tested. This

algorithm has the advantage of working with different

sampling rate sensors like accelerometers and gyroscopes

with digital compass or magnetometers or even cameras.

Due to its simplicity, GPF algorithm seemed to be a

good candidate for orientation estimation applications.

However, as it needs a rather large number of particles,

it turned out to be not so suitable for implementation on

simple architectures for real-time applications.

All filters show a similar performance for the quater-

nion based orientation estimation problem, but the GPF

overcomes to the PF in terms of the number of particles

required to achieve similar precision.

Future work will include parallelization of GPF for

real-time applications using GPU and data provided by

AGV or UAV sensors including inertial measurement

units and cameras, taking advantage of the two stage

measurement algorithm.

ACKNOWLEGMENTS

The authors thanks the anonymous referees for their com-

ments and suggestions that led to an improvement of the

present work.

This work was supported in part by ANPCyT grant

PICT–PRH 2009/136.

REFERENCES

[1] K. Maenaka, “Mems inertial sensors and their appli-

cations,” in Networked Sensing Systems, 2008. INSS

2008. 5th International Conference on, 2008, pp.

71–73.

[2] D. Simon, Optimal State Estimation: Kalman,

H Infinity, and Nonlinear Approaches. Wiley-

Interscience, 2006.

[3] B. Anderson and J. More, Optimal filtering.

Prentice-Hall, 2005.

[4] S. Julier, J. Uhlmann, and H. Durrant-Whyte, “A

new approach for filtering nonlinear systems,” in

American Control Conference, Proceedings of the

1995, vol. 3, 1995, pp. 1628–1632 vol.3.

[5] N. Gordon, D. Salmond, and A. F. M. Smith, “Novel

approach to nonlinear/non-gaussian bayesian state

estimation,” Radar and Signal Processing, IEE Pro-

ceedings F, vol. 140, no. 2, pp. 107–113, 1993.

[6] J. H. Kotecha and P. Djuric, “Gaussian particle fil-

tering,” Signal Processing, IEEE Transactions on,

vol. 51, no. 10, pp. 2592–2601, 2003.

[7] J. LaViola, “A comparison of unscented and ex-

tended kalman filtering for estimating quaternion

motion,” in American Control Conference, 2003.

Proceedings of the 2003, vol. 3, 2003, pp. 2435–

2440 vol.3.

[8] S. Sabatelli, M. Galgani, L. Fanucci, and A. Roc-

chi, “A double stage kalman filter for sensor fusion

and orientation tracking in 9d imu,” in Sensors Ap-

plications Symposium (SAS), 2012 IEEE, 2012, pp.

1–5.

[9] S. Julier, “The scaled unscented transformation,” in

American Control Conference, 2002. Proceedings

of the 2002, vol. 6, 2002, pp. 4555–4559 vol.6.

[10] M. Sanjeev Arulampalam, S. Maskell, N. Gordon,

and T. Clapp, “A tutorial on particle filters for online

nonlinear/non-gaussian bayesian tracking,” Signal

Processing, IEEE Transactions on, vol. 50, no. 2,

pp. 174–188, 2002.

[11] R. Douc and O. Cappe, “Comparison of resampling

schemes for particle filtering,” in Image and Sig-

nal Processing and Analysis, 2005. ISPA 2005. Pro-

ceedings of the 4th International Symposium on,

2005, pp. 64–69.

[12] W. Phillips and C. Hailey, “Review of attitude rep-

resentations used for aircraft kinematics,” Journal

of Aircraft, vol. 38, no. 4, pp. 718–737, 2001.

900




